System Identification Toolbox ${ }^{\text {TM }}$

 ReferenceR2014b

Lennart Liung

MATLAB®\&SIMULINK

How to Contact MathWorks

Latest news:
www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
System Identification Toolbox ${ }^{\mathrm{TM}}$ Reference
© COPYRIGHT 1988-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2007	Online only	Revised for Version 7.1 (Release 2007b)
March 2008	Online only	Revised for Version 7.2 (Release 2008a)
October 2008	Online only	Revised for Version 7.2.1 (Release 2008b)
March 2009	Online only	Revised for Version 7.3 (Release 2009a)
September 2009	Online only	Revised for Version 7.3.1 (Release 2009b)
March 2010	Online only	Revised for Version 7.4 (Release 2010a)
September 2010	Online only	Revised for Version 7.4.1 (Release 2010b)
April 2011	Online only	Revised for Version 7.4.2 (Release 2011a)
September 2011	Online only	Revised for Version 7.4.3 (Release 2011b)
April 2012	Online only	Revised for Version 8.0 (Release 2012a)
September 2012	Online only	Revised for Version 8.1 (Release 2012b)
March 2013	Online only	Revised for Version 8.2 (Release 2013a)
September 2013	Online only	Revised for Version 8.3 (Release 2013b)
March 2014	Online only	Revised for Version 9.0 (Release 2014a)
October 2014	Online only	Revised for Version 9.1 (Release 2014b)

Functions - Alphabetical List

Blocks - Alphabetical List
2

Functions - Alphabetical List

absorbDelay

Replace time delays by poles at $z=0$ or phase shift

Syntax

sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description

sysnd = absorbDelay (sysd) absorbs all time delays of the "dynamic system model" sysd into the system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k sampling periods is replaced by k poles at $z=0$. For continuous-time models (other than frequency response data models), time delays have no exact representation with a finite number of poles and zeros. Therefore, use pade to compute a rational approximation of the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay absorbs all time delays into the frequency response data as a phase shift.
[sysnd, G] = absorbDelay(sysd) returns the matrix G that maps the initial states of the ss model sysd to the initial states of the sysnd.

Examples

Example 1

Create a discrete-time transfer function that has a time delay and absorb the time delay into the system dynamics as poles at $z=0$.

```
z = tf('z',-1);
sysd = (-.4*z -.1)/(z^2 + 1.05*z + .08);
sysd.InputDelay = 3
```

These commands produce the result:

```
Transfer function:
    -0.4 z - 0.1
z^(-3) * ------------------
```

Sampling time: unspecified

The display of sysd represents the InputDelay as a factor of $z^{\wedge}(-3)$, separate from the system poles that appear in the transfer function denominator.

Absorb the delay into the system dynamics.

```
sysnd = absorbDelay(sysd)
```

The display of sysnd shows that the factor of $z^{\wedge}(-3)$ has been absorbed as additional poles in the denominator.

```
Transfer function:
    -0.4 z - 0.1
z^5 + 1.05 z^4 + 0.08 z^3
Sampling time: unspecified
```

Additionally, sysnd has no input delay:

```
sysnd.InputDelay
```

ans $=$
0

Example 2

Convert "nk" into regular coefficients of a polynomial model.
Consider the discrete-time polynomial model:
m = idpoly(1,[00023 3);
The value of the B polynomial, m.b, has 3 leading zeros. Two of these zeros are treated as input-output delays. Consequently:

```
sys = tf(m)
```

creates a transfer function such that the numerator is [$\left.\begin{array}{lll}0 & 2 & 3\end{array}\right]$ and the IO delay is 2 . In order to treat the leading zeros as regular B coefficients, use absorbDelay:

```
m2 = absorbDelay(m);
```

sys2 = tf(m2);
sys2's numerator is $\left[\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right]$ 3 and IO delay is 0 . The model m2 treats the leading zeros as regular coefficients by freeing their values. m2.Structure.b.Free(1:2) is TRUE while m.Structure.b.Free(1:2) is FALSE.

See Also
hasdelay | pade | totaldelay

advice

Analysis and recommendations for data or estimated linear models

Syntax

advice(data)
advice (model, data)

Description

advice (data) displays the following information about the data in the MATLAB ${ }^{\text {® }}$
Command Window:

- What are the excitation levels of the signals and how does this affect the model orders? See also pexcit.
- Does it make sense to remove constant offsets and linear trends from the data? See also detrend.
- Is there an indication of output feedback in the data? See also feedback.
- Would a nonlinear ARX model perform better than a linear ARX model?
advice (model, data) displays the following information about the estimated linear model in the MATLAB Command Window:
- Does the model capture essential dynamics of the system and the disturbance characteristics?
- Is the model order higher than necessary?
- Is there potential output feedback in the validation data?

Input Arguments
 data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model object.

```
See Also
detrend | feedback | iddata | pexcit
```


addreg

Add custom regressors to nonlinear ARX model

Syntax

```
m = addreg(model,regressors)
m = addreg(model,regressors,output)
```


Description

m = addreg(model, regressors) adds custom regressors to a nonlinear ARX model by appending the CustomRegressors model property. model and m are idnalrx objects. For single-output models, regressors is an object array of regressors you create using customreg or polyreg, or a cell array of string expressions. For multiple-output models, regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell array of cell arrays of string expressions. addreg adds each element of the ny cells to the corresponding model output channel. If regressors is a single regressor, addreg adds this regressor to all output channels.
m = addreg(model,regressors,output) adds regressors regressors to specific output channels output of a multiple-output model. output is a scalar integer or vector of integers, where each integer is the index of a model output channel. Specify several pairs of regressors and output values to add different regressor variables to the corresponding output channels.

Examples

Add regressors to a nonlinear ARX model as a cell array of strings:

```
% Create nonlinear ARX model with standard regressors:
    m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
% Create model with additional custom regressors:
    m2 = addreg(m1,{'y1(t-2)^2';'u1(t)*y1(t-7)'})
% List all standard and custom regressors of m2:
    getreg(m2)
```

Add regressors to a nonlinear ARX model as customreg objects:
\% Create nonlinear ARX model with standard regressors: m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
\% Create a model based on m 1 with custom regressors: $r 1=$ customreg(@(x) $x^{\wedge} 2$, \{'y1'\}, 2)
r2 = customreg(@(x,y)x*y, \{'u1','y1'\}, [0 7])
$\mathrm{m} 2=\operatorname{addreg}(\mathrm{m} 1,[\mathrm{r} 1 \mathrm{r} 2])$;

More About

- "Identifying Nonlinear ARX Models"

See Also
customreg | getreg | nlarx | polyreg

aic

Akaike Information Criterion for estimated model

Syntax

```
am = aic(model)
am = aic(model1,model2,...)
```


Description

am = aic(model) returns a scalar value of the "Akaike's Information Criterion (AIC)" on page 1-9 for the estimated model.
am = aic(model1, model2,...) returns a row vector containing AIC values for the estimated models model1, model2,....

Arguments

model
Name of an idtf, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.

More About

Akaike's Information Criterion (AIC)

Akaike's Information Criterion (AIC) provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest AIC.

Note: If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Information Criterion (AIC) is defined by the following equation:

$$
A I C=\log V+\frac{2 d}{N}
$$

where V is the loss function, d is the number of estimated parameters, and N is the number of values in the estimation data set.

The loss function V is defined by the following equation:

$$
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
$$

where θ_{N} represents the estimated parameters.
For $d \ll N$:

$$
A I C=\log \left(V\left(1+\frac{2 d}{N}\right)\right)
$$

Note: AIC is approximately equal to $\log (F P E)$.

References

Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, PrenticeHal PTR, 1999. See sections about the statistical framework for parameter estimation and maximum likelihood method and comparing model structures.

See Also
fpe

append

Group models by appending their inputs and outputs

Syntax

```
sys = append(sys1,sys2,...,sysN)
```


Description

sys $=$ append(sys1,sys2,...,sysN) appends the inputs and outputs of the models sys1,...,sysN to form the augmented model sys depicted below.

sys
For systems with transfer functions $H_{1}(s), \ldots, H_{\mathrm{N}}(s)$, the resulting system sys has the block-diagonal transfer function

$$
\left[\begin{array}{cccc}
H_{1}(s) & 0 & \cdots & 0 \\
0 & H_{2}(s) & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & H_{N}(s)
\end{array}\right]
$$

For state-space models sys1 and sys2 with data ($A_{1}, B_{1}, C_{1}, D_{1}$) and ($A_{2}, B_{2}, C_{2}, D_{2}$), append (sys1, sys2) produces the following state-space model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{aligned}
$$

Arguments

The input arguments sys1,..., sysN can be model objects s of any type. Regular matrices are also accepted as a representation of static gains, but there should be at least one model in the input list. The models should be either all continuous, or all discrete with the same sample time. When appending models of different types, the resulting type is determined by the precedence rules (see "Rules That Determine Model Type" for details).

There is no limitation on the number of inputs.

Examples

The commands

```
sys1 = tf(1,[1 0]);
sys2 = ss(1,2,3,4);
sys = append(sys1,10,sys2)
produce the state-space model
a =
\begin{tabular}{lrr} 
& \(x 1\) & \(x 2\) \\
\(x 1\) & 0 & 0
\end{tabular}
b =
\begin{tabular}{rrrr} 
& u 1 & u 2 & u 3 \\
x 1 & 1 & 0 & 0 \\
x 2 & 0 & 0 & 2
\end{tabular}
```

```
c =
    l}\begin{array}{lrr}{\textrm{x}1}&{x2}\\{y1}&{1}&{0}
    y2 0}
    y3 0 3
d =
        u1 u2 u3
    y1 0 0 0
    y2 0
    y3 0}00
```

Continuous-time model.

```
See Also
connect | feedback | parallel | series
```


ar

Estimate parameters of AR model for scalar time series

Syntax

```
m = ar(y,n)
[m,ref1] = ar(y,n,approach,window)
m= ar(y,n,Name,Value)
m= ar(y,n,__,opt)
```


Description

Note: Use for scalar time series only. For multivariate data, use arx.
$m=\operatorname{ar}(y, n)$ returns an idpoly model m.
[m,ref1] = ar(y,n,approach,window) returns an idpoly model m and the variable refl. For the two lattice-based approaches, 'burg' and 'gl', refl stores the reflection coefficients in the first row, and the corresponding loss function values in the second row. The first column of refl is the zeroth-order model, and the $(2,1)$ element of refl is the norm of the time series itself.
$m=\operatorname{ar}(y, n$, Name, Value) specifies model structure attributes using one or more Name,Value pair arguments.
$m=\operatorname{ar}(y, n$, \qquad , opt) specifies the estimations options using opt.

Input Arguments

y

iddata object that contains the time-series data (one output channel).
Default:

n

Scalar that specifies the order of the model you want to estimate (the number of A parameters in the AR model).

approach

One of the following text strings, specifying the algorithm for computing the least squares AR model:

- 'burg ': Burg's lattice-based method. Solves the lattice filter equations using the harmonic mean of forward and backward squared prediction errors.
- 'fb': (Default) Forward-backward approach. Minimizes the sum of a least- squares criterion for a forward model, and the analogous criterion for a time-reversed model.
- 'gl' : Geometric lattice approach. Similar to Burg's method, but uses the geometric mean instead of the harmonic mean during minimization.
- 'ls': Least-squares approach. Minimizes the standard sum of squared forwardprediction errors.
- 'yw': Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.

window

One of the following text strings, specifying how to use information about the data outside the measured time interval (past and future values):

- 'now': (Default) No windowing. This value is the default except when the approach argument is ' yw '. Only measured data is used to form regression vectors. The summation in the criteria starts at the sample index equal to $\mathrm{n}+1$.
- 'pow ': Postwindowing. Missing end values are replaced with zeros and the summation is extended to time $\mathrm{N}+\mathrm{n}$ (N is the number of observations).
- 'ppw': Pre- and postwindowing. Used in the Yule-Walker approach.
- 'prw': Prewindowing. Missing past values are replaced with zeros so that the summation in the criteria can start at time equal to zero.

opt

Estimation options.
opt is an options set that specifies the following:

- data offsets
- covariance handling
- estimation approach
- estimation window

Use arOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'ts'

Positive scalar that specifies the sample time. Use when you specify Y as double vector rather than an IDDATA object.

Default:

'IntegrateNoise'

Boolean value that specifies whether the noise source contains an integrator or not. Use
it to create "ARI" structure models: $A y=\frac{e}{\left(1-z^{-1}\right)}$
Default: false

Output Arguments

m

An idpoly model.

ref1

An 2-by-2 array. The first row stores the reflection coefficients, and the second row stores the corresponding loss function values. The first column of refl is the zeroth-order model, and the $(2,1)$ element of refl is the norm of the time series itself.

Examples

Given a sinusoidal signal with noise, compare the spectral estimates of Burg's method with those found from the forward-backward approach and no-windowing method on a Bode plot.

```
y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)
```

Estimate an ARI model.

```
load iddata9 z9
Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y, 4, 'ls', 'Ts', Ts, 'IntegrateNoise', true)
compare(y,model,5) % 5 step ahead prediction
```

Use option set to choose ' ls ' estimation approach and to specify that covariance matrix should not be estimated.

```
y = rand(100,1);
opt = arOptions('Approach', 'ls', 'EstCovar', false);
model = ar(y, N, opt);
```


More About

Algorithms

The AR model structure is given by the following equation:

$$
A(q) y(t)=e(t)
$$

AR model parameters are estimated using variants of the least-squares method. The following table summarizes the common names for methods with a specific combination of approach and window argument values.

Method	Approach and Windowing
Modified Covariance Method	(Default) Forward-backward approach and no windowing.

Method	Approach and Windowing
Correlation Method	Yule-Walker approach, which corresponds to least squares plus pre- and postwindowing.
Covariance Method	Least squares approach with no windowing. arx uses this routine.

References

Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, 1987, Chapter 8.

```
See Also
arOptions | arx | etfe | forecast | idpoly | ivar | pem | spa
```


armax

Estimate parameters of ARMAX model using time-domain data

Syntax

```
sys = armax(data,[na nb nc nk])
sys = armax(data,[na nb nc nk],Name,Value)
sys = armax(data,init_sys)
sys = armax(data,
```

\qquad

``` ,opt)
```


Description

Note: armax supports only time-domain data. For frequency-domain data, use oe.
sys = armax(data,[na nb nc nk]) returns an idpoly model, sys, with estimated parameters and covariance (parameter uncertainties). Estimates the parameters using the prediction-error method and specified polynomial orders.
sys = armax(data, [na nb nc nk], Name, Value) returns an idpoly model, sys, with additional options specified by one or more Name,Value pair arguments.
sys = armax(data,init_sys) estimates a polynomial model using the ARMAX structure polynomial model init_sys to configure the initial parameterization.
sys $=\operatorname{armax}($ data, __ , opt $)$ specifies estimation options using the option set opt.

Input Arguments

data

Estimation data.
Specify data as an iddata object containing the time-domain input-output data.

You cannot use frequency-domain data for estimating ARMAX models.

[na nb nc nk]

Polynomial orders.
[na nb nc nk] define the polynomial orders of an "ARMAX Model" on page 1-28.

- na - Order of the polynomial $A(q)$.

Specify na as an $N y$-by- $N y$ matrix of nonnegative integers. $N y$ is the number of outputs.

- $\mathrm{nb}-$ Order of the polynomial $B(q)+1$.
nb is an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nc - Order of the polynomial $C(q)$.
nc is a column vector of nonnegative integers of length $N y . N y$ is the number of outputs.
- nk - Input-output delay expressed as fixed leading zeros of the B polynomial.

Specify nk as an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.

init_sys

Linear polynomial model that configures the initial parameterization of sys.
init_sys must be an ARMAX model. You may obtain init_sys by either performing an estimation using measured data, or by direct construction.

Use the Structure property of init_sys to configure initial guesses and constraints for $A(q), B(q)$, and $C(q)$.

To specify an initial guess for, say, the $A(q)$ term of init_sys, set init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the $B(q)$ term of init_sys:

- set init_sys.Structure.b.Minimum to the minimum $B(q)$ coefficient values
- set init_sys.Structure.b. Maximum to the maximum $B(q)$ coefficient values
- set init_sys.Structure.b. Free to indicate which $B(q)$ coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.
If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report. OptionsUsed are used.

opt

Estimation options.
opt is an options set that specifies estimation options, including:

- estimation objective
- handling of initial conditions
- numerical search method to be used in estimation

Use armaxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

'InputDelay'

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

'ioDelay'

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny -by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs. Useful as a replacement for the nk order, you can factor out max (nk-1, 0) lags as the ioDelay value.

Default: 0 for all input/output pairs

'IntegrateNoise'

Logical vector specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length $N y$, where $N y$ is the number of outputs.
Setting IntegrateNoise to true for a particular output results in the model:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{C(q)}{1-q^{-1}} e(t)
$$

Where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
Use IntegrateNoise to create an ARIMA model.
For example,

```
load iddata9 z9;
```

z9.y = cumsum(z9.y); \%integrated data
sys $=\operatorname{armax}(z 9,[41], ' I n t e g r a t e N o i s e ', t r u e) ;$
compare(z9,sys,10) \%10-step ahead prediction

Default: false(Ny,1) ($N y$ is the number of outputs.)

Output Arguments

sys

Identified ARMAX structure polynomial model.
sys is a discrete-time idpoly model, which encapsulates the estimated A, B and C polynomials and the parameter covariance information.

Examples

Estimate ARMAX Model Using Regularization

Estimate a regularized ARMAX model by converting a regularized ARX model.
Load data.
load regularizationExampleData.mat mOsimdata;
Estimate an unregularized ARMAX model of order 15.

```
m1 = armax(mOsimdata(1:150), [30 30 30 1]);
```

Estimate a regularized ARMAX model by determining Lambda value by trial and error.

```
opt = armaxOptions;
opt.Regularization.Lambda = 1;
m2 = armax(mOsimdata(1:150), [30 30 30 1], opt);
```

Obtain a lower-order ARMAX model by converting a regularized ARX model followed by order reduction.

```
opt1 = arxOptions;
[L,R] = arxRegul(mOsimdata(1:150), [30 30 1]);
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(mOsimdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));
```

Compare the model outputs against data.
compare(m0simdata(150:end), m1, m2, mr, compare0ptions('InitialCondition','z'));

Specify Estimation Options

Estimate an ARMAX model from measured data and specify the estimation options.
Estimate an ARMAX model with simulation focus, using 'lm' as the search method and maximum number of search iterations set to 10 .

```
load twotankdata;
z = iddata(y,u,0.2);
opt = armaxOptions;
opt.Focus = 'simulation';
```

```
opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 10;
opt.Display = 'on';
sys = armax(z, [2 2 2 1], opt);
```

The termination conditions for measured component of the model shown in the progress viewer is that the maximum number of iterations were reached.

To improve results, re-estimate the model using a greater value for MaxIter, or continue iterations on the previously estimated model as follows:

```
sys2 = armax(z, sys);
compare(z, sys, sys2)
```


1-25
where sys2 refines the parameters of sys to improve the fit to data.

Estimate an ARIMA Model

Estimate a 4th order ARIMA model for univariate time-series data.

load iddata9;

z9.y = cumsum(z9.y); \% integrated data
model = armax(z9, [4 1], 'IntegrateNoise', true);
compare(z9, model, 10) \% 10-step ahead prediction

Estimate ARMAX Models Iteratively

Estimate ARMAX models of varying orders iteratively from measured data.

Estimate ARMAX models of orders varying between 1 and 4 for dryer data.

```
load dryer2;
z = iddata(y2,u2,0.08,'Tstart',0);
na = 2:4; nc = 1:2; nk = 0:2;
models = cell(1,18);
ct = 1;
for i = 1:3
    na_ = na(i);
    nb_ = na_;
    for j = 1:2
        nc_ = nc(j);
        for k = 1:3
            nk = nk(k);
            models{ct} = armax(z, [na_, nb_, nc_, nk_]);
            ct = ct+1;
        end
    end
end
```

Stack the estimated models and compare their simulated responses to estimation data \mathbf{z}.

```
models = stack(1,models{:});
compare(z,models)
```


Alternatives

armax does not support continuous-time model estimation. Use tfest to estimate a continuous-time transfer function model, or ssest to estimate a continuous-time statespace model.

More About

ARMAX Model

The ARMAX model structure is

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)= \\
& b_{1} u\left(t-n_{k}\right)+\ldots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right)+ \\
& c_{1} e(t-1)+\ldots+c_{n_{c}} e\left(t-n_{c}\right)+e(t)
\end{aligned}
$$

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+C(q) e(t)
$$

where

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{c} - Number of C coefficients.
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system.
- $y(t-1) \ldots y\left(t-n_{a}\right)$ - Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)$ - White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the delay. q is the delay operator. Specifically,

$$
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1} \\
& C(q)=1+c_{1} q^{-1}+\ldots+c_{n_{c}} q^{-n_{c}}
\end{aligned}
$$

If data is a time series, which has no input channels and one output channel, then armax calculates an ARMA model for the time series

$$
A(q) y(t)=e(t)
$$

In this case

```
orders = [na nc]
```


ARIMAX Model

An ARIMAX model structure is similar to ARMAX, except that it contains an integrator in the noise source $e(t)$:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{1}{\left(1-q^{-1}\right)} e(t)
$$

If there are no inputs, this reduces to an ARIMA model:

$$
A(q) y(t)=\frac{1}{\left(1-q^{-1}\right)} e(t)
$$

Tips

- Use the IntegrateNoise property to add integrators to the noise source.

Algorithms

An iterative search algorithm minimizes a robustified quadratic prediction error criterion. The iterations are terminated either when the maximum number of iterations is reached, or when the expected improvement is less than the specified tolerance, or when a lower value of the criterion cannot be found. You can get information about the stopping criteria using sys.Report. Termination.

Use the armaxOptions option set to create and configure options affecting the estimation results. In particular, set the search algorithm attributes, such as MaxIter and Tolerance, using the 'SearchOption' property.

When you do not specify initial parameter values for the iterative search as an initial model, they are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the Advanced. ErrorThreshold estimation option and on the estimated standard deviation of the residuals from the initial parameter estimate. It is not recalculated during the minimization. By default, no robustification is performed; the default value of ErrorThreshold option is 0 .

To ensure that only models corresponding to stable predictors are tested, the algorithm performs a stability test of the predictor. Generally, both $C(q)$ and $F(q)$ (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the estimation option 'Display' is 'On' or 'Full'. With 'Display' = 'Full', both the current and the previous parameter estimates are displayed in column-vector form, listing parameters in alphabetical order. Also, the values of the criterion function (cost) are given and the Gauss-Newton vector and its norm are also displayed. With 'Display' = 'On' only the criterion values are displayed.

- "Regularized Estimates of Model Parameters"

References

Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, PrenticeHal PTR, 1999. See chapter about computing the estimate.

```
See Also
armaxOptions | arx| bj | forecast | iddata | idfrd| idpoly | oe | polyest
| ssest | tfest
```


armaxOptions

Option set for armax

Syntax

```
opt = armaxOptions
opt = armaxOptions(Name,Value)
```


Description

opt $=$ armaxOptions creates the default options set for armax.
opt $=$ armaxOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition'

Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial conditions are set to zero.
- 'estimate ' - The initial conditions are treated as independent estimation parameters.
- 'backcast ' - The initial conditions are estimated using the best least squares fit.
- 'auto ' - The software chooses the method to handle initial conditions based on the estimation data.

Default: 'auto'

```
'Focus'
```

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.

- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction. This approach typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. You receive an estimation result that is the same as if you had first prefiltered using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same length as the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

' Display ' - Specify whether to display the estimation progress

 'off' (default) | 'on'Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

' InputOffset ' - Remove offset from time-domain input data during estimation
 [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' OutputOffset ' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'Regularization'

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0

- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

'SearchMethod'

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:

- 'gn ' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J))*norm(J) are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- 'gna ' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where $s v$ are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). This value is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. This value is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method so that the next parameter value is pinv $(H+d * I) * g r a d$ from the previous one. H is the Hessian, I is the identity matrix,
and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'Isqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox ${ }^{\text {TM }}$ software. You must have Optimization Toolbox installed to use this option. This search method can handle only the Trace criterion.
- 'grad ' - The steepest descent gradient search method.
- 'auto' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

'SearchOption'

Options set for the search algorithm.

SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'Im', 'grad', or 'auto'

Field Description

Name
Toleran Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
MaxIter Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter $=0$ returns the result of the start-up procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Field Description

Name

$$
\text { Default: } 20
$$

Field Name	Description	
Advan	Advanced search settings.	arch settings.
	Field Name	Description
	GnPinvCon	Singular values of the Jacobian matrix that are smaller than GnPinvConst*max (size (J) *norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'. GnPinvConst must be a positive, real value. Default: 10000
	InitGnaTo.	Initial value of gamma. Applicable when SearchMethod is 'gna'. Default: 0.0001
	LMStartVa	Starting value of search-direction length d in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. Default: 0.001
	LMStep	Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. Default: 2
	MaxBisect.	Maximum number of bisections used by the line search along the search direction. Default: 25
	MaxFunEva.	Iterations stop if the number of calls to the model file exceeds this value. MaxFunEvals must be a positive, integer value.

	Description	
	Field Name	Description
		Default: Inf
	MinParCha	Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. Default: 0
	RelImprov	Iterations stop if the relative improvement of the criterion function is less than RelImprovement. Rellmprovement must be a positive, integer value. Default: 0
	StepReduc	Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until either MaxBisections tries are completed or a lower value of the criterion function is obtained. StepReduction must be a positive, real value that is greater than 1. Default: 2

SearchOption structure when SearchMethod is specified as 'Isqnonlin'

Field Name	Description
TolFun	Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.
	The value of TolFun is the same as that of sys.SearchOption. Advanced. TolFun. Default: $1 \mathrm{e}-5$

Field Name	Description
TolX	Termination tolerance on the estimated parameter values. The value of TolX is the same as that of sys.SearchOption. Advanced. TolX. Default: 1e-6
MaxIterMaximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.	
The value of MaxIter is the same as that of sys.SearchOption. Advanced . MaxIter.	
Default: 20	

'Advanced '

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [2].

ErrorThreshold $=0$ disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z-Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

$$
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
$$

- $y_{\text {meas }}$ is the measured output.
- $y_{p, z}$ is the predicted output of a model estimated using zero initial conditions.
- $y_{p, e}$ is the predicted output of a model estimated using estimated initial conditions.

Applicable when InitialCondition is 'auto '.
Default: 1.05

Output Arguments

opt

Option set containing the specified options for armax.

Examples

Create Default Options Set for ARMAX Estimation

opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an options set for armax using the 'stability' for Focus. Set the Display to 'on'.

```
opt = armaxOptions('Focus','stability','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = armaxOptions;
opt.Focus = 'stability';
opt.Display = 'on';
```


References

[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.

See Also

armax | idfilt

arOptions

Option set for ar

Syntax

```
opt = arOptions
opt = arOptions(Name,Value)
```


Description

opt $=$ arOptions creates the default options set for ar.
opt $=$ arOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'Approach'

Technique used for AR model estimation.
Approach requires one of the following strings:

- 'fb' - Forward-backward approach.
- 'ls' - Least-squares method.
- 'yw' - Yule-Walker approach.
- 'burg' - Burg's method.
- 'gl' - Geometric lattice method.

Default: 'fb'

'Window'

Data windowing technique.
Window determines how the data outside the measured time interval (past and future values) is handled.

Window requires one of the following strings:

- 'now' - No windowing.
- 'prw' - Pre-windowing.
- 'pow' - Post-windowing.
- 'ppw' - Pre- and post-windowing.

This option is ignored when you use the Yule-Walker approach.
Default: 'now'

'DataOffset'

Data offset level that is removed before estimation of parameters.
Specify DataOffset as a double scalar. For multiexperiment data, specify DataOffset as a vector of length $N e$, where $N e$ is the number of experiments. Each entry of the vector is subtracted from the corresponding data.

Default: [] (no offsets)

'MaxSize'

Specifies the maximum number of elements in a segment when input/output data is split into segments.

If larger matrices are needed, the software uses loops for calculations. Use this option to manage the trade-off between memory management and program execution speed. The original data matrix must be smaller than the matrix specified by MaxSize.

MaxSize must be a positive integer.

Default: 250000

Output Arguments

opt

Option set containing the specified options for ar.

Examples

Create Default Options Set for AR Estimation

opt = arOptions;

Specify Options for AR Estimation

Create an options set for ar using the least squares algorithm for estimation. Set Window to 'ppw'.

```
opt = arOptions('Approach','ls','Window','ppw');
```

Alternatively, use dot notation to set the values of opt.

```
opt = arOptions;
opt.Approach = 'ls';
opt.Window = 'ppw';
```


See Also

ar

arX

Estimate parameters of ARX or AR model using least squares

Syntax

```
sys = arx(data,[na nb nk])
sys = arx(data,[na nb nk],Name,Value)
sys = arx(data,[na nb nk],
```

\qquad

``` ,opt)
```


Description

Note: arx does not support continuous-time estimations. Use tfest instead.
sys = arx(data,[na nb nk]) returns an ARX structure polynomial model, sys, with estimated parameters and covariances (parameter uncertainties) using the least-squares method and specified orders.
sys $=$ arx(data,[na nb nk], Name, Value) estimates a polynomial model with additional options specified by one or more Name,Value pair arguments.
sys = arx(data,[na nb nk], \qquad , opt) specifies estimation options that configure the estimation objective, initial conditions and handle input/output data offsets.

Input Arguments

data

Estimation data.
Specify data as an iddata object, an frd object, or an idfrd frequency-response-data object.

[na nb nk]

Polynomial orders.
[na nb nk] define the polynomial orders of an ARX model.

- na - Order of the polynomial $A(q)$.

Specify na as an $N y$-by- $N y$ matrix of nonnegative integers. $N y$ is the number of outputs.

- $\mathrm{nb}-$ Order of the polynomial $B(q)+1$.
nb is an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nk - Input-output delay expressed as fixed leading zeros of the B polynomial.

Specify nk as an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.

opt

Estimation options.
opt is an options set that specifies estimation options, including:

- input/output data offsets
- output weight

Use arxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InputDelay'

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

'ioDelay'

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs. Useful as a replacement for the nk order, you can factor out $\max (\mathrm{nk}-1,0)$ lags as the ioDelay value.

Default: 0 for all input/output pairs

'IntegrateNoise'

Specify integrators in the noise channels.
Adding an integrator creates an ARIX model represented by:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{1}{1-q^{-1}} e(t)
$$

where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
IntegrateNoise is a logical vector of length Ny , where Ny is the number of outputs.
Default: false (Ny, 1), where Ny is the number of outputs

Output Arguments

sys

Identified ARX structure polynomial model.
sys is a discrete-time idpoly model, which encapsulates the estimated A and B polynomials and the parameter covariance information.

Examples

Estimate ARX model

Generate input data based on a specified ARX model, and then use this data to estimate an ARX model.

```
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);
```


Estimate ARX Model Using Regularization

Use arxRegul to automatically determine regularization constants and use the values for estimating an FIR model of order 50.

Obtain L and R values.

```
load regularizationExampleData eData;
orders = [0 50 0];
[L,R] = arxRegul(eData,orders);
```

By default, the TC kernel is used.
Use the returned Lambda and R values for regularized ARX model estimation.

```
opt = arxOptions;
opt.Regularization.Lambda = L;
opt.Regularization.R = R;
model = arx(eData,orders,opt);
```


More About

ARX structure

arx estimates the parameters of the ARX model structure:

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
$$

The parameters na and nb are the orders of the ARX model, and nk is the delay.

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system.
- $y(t-1) \ldots y\left(t-n_{a}\right)$ - Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)$ - White-noise disturbance value.

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+e(t)
$$

q is the delay operator. Specifically,

$$
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1}
\end{aligned}
$$

Time Series Models

For time-series data that contains no inputs, one output and orders = na, the model has AR structure of order na.

The AR model structure is

$$
A(q) y(t)=e(t)
$$

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

Multi-Output Models

For models with multiple inputs and multiple outputs, na, nb, and nk contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction error covariance matrix, or the norm

$$
\sum_{t=1}^{N} e^{T}(t) e(t)
$$

To transform this to an arbitrary quadratic norm using a weighting matrix Lambda

$$
\sum_{t=1}^{N} e^{T}(t) \Lambda^{-1} e(t)
$$

use the syntax

```
opt = arxOptions('OutputWeight', inv(lambda))
m = arx(data, orders, opt)
```


Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured signals are never required in the predictors. Therefore, there is no need to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by initial conditions that support circular convolution.

Set the InitialCondition estimation option (see arxOptions) to one the following values:

- 'zero' - No adjustment.
- 'estimate' - Perform adjustment to the data by initial conditions that support circular convolution.
- 'auto' - Automatically choose between 'zero' and 'estimate' based on the data.

Algorithms

QR factorization solves the overdetermined set of linear equations that constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are used (no fill-out with zeros). When the regression matrix is larger than MaxSize, data is segmented and $Q R$ factorization is performed iteratively on these data segments.

Without regularization, the ARX model parameters vector θ is estimated by solving the normal equation:

$$
\left(J^{T} J\right) \theta=J^{T} y
$$

where J is the regressor matrix and y is the measured output. Therefore,

$$
\theta=\left(J^{T} J\right)^{-1} J^{T} y
$$

Using regularization adds a regularization term:
$\theta=\left(J^{T} J+\lambda R\right)^{-1} J^{T} y$
where, λ and R are the regularization constants. See arxOptions for more information on the regularization constants.

- "Using Linear Model for Nonlinear ARX Estimation"
- "Regularized Estimates of Model Parameters"

See Also

arx0ptions | arxRegul | arxstruc | ar | armax | bj | iv4 | n4sid | oe | nlarx | impulseest

arxdata

ARX parameters from multiple-output models with variance information

Note: arxdata will be removed in a future release. Use polydata instead.

Syntax

[A,B] = arxdata(m)
$[A, B, d A, d B]=\operatorname{arxdata}(m)$

Arguments

m
An idarx model object.
Also accepts single-output idpoly models with an underlying ARX structure with orders $n c=n d=n f=0$.

Description

$[A, B]=\operatorname{arxdata}(m)$ returns A and B as 3-D arrays.
Suppose $n y$ is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.
A is an ny-by-ny-by- $(n a+1)$ array such that
$A(:,:, k+1)=A k$
$A(:,:, 1)=\operatorname{eye}(n y)$
where $\mathrm{k}=0,1, \ldots, \mathrm{na}$.
B is an ny-by-nu-by- $(n b+1)$ array with
$B(:,:, k+1)=B k$
$A(0)$ is always the identity matrix. The leading entries in B equal to zero, which means there are no delays in the model.

Note: For a time series, B = [].
$[A, B, d A, d B]=\operatorname{arxdata}(m)$ returns A and B matrices, and $d A$ and $d B$ as the estimated standard deviations of A and B, respectively.

More About

Tips

A and B are 2-D or 3-D arrays and are returned in the standard multivariable ARX format (see idarx), describing the model.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

where A_{k} and B_{k} matrices have dimensions $n y$-by- $n y$ and $n y$-by- $n u$, respectively. $n y$ is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.

See Also
idarx | idpoly

arxOptions

Option set for ar

Syntax

opt $=$ arxOptions
opt $=$ arxOptions(Name, Value)

Description

opt $=$ arxOptions creates the default options set for arx.
opt = arxOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition' - Initial condition

'auto' (default) | 'zero' | 'estimate' | 'backcast'
Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial conditions are set to zero.
- 'estimate ' - The initial conditions are treated as independent estimation parameters.
- 'backcast ' - The initial conditions are estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial conditions based on the estimation data.

'Focus' - Estimation focus

'prediction' (default) | 'simulation' | vector | matrix | linear system
Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- 'prediction ' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where $w l$ and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus '. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.
'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

' Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed
' InputOffset ' - Remove offset from time-domain input data during estimation
[] (default) | vector of positive integers
Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' Output0ffset ' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'OutputWeight'

Weight of prediction errors in multi-output estimation.
Specify OutputWeight as a positive semidefinite, symmetric matrix (W). The software minimizes the trace of the weighted prediction error matrix trace ($E^{\prime} * E * W$). E is the matrix of prediction errors, with one column for each output, and W is the positive semidefinite, symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-output models.

Default: []

'Regularization'

Options for regularized estimation of ARX model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.

The default value of zero implies no regularization.

Default: 0

- R - Weighting matrix.

Specify a positive scalar or a positive definite matrix. The length of the matrix must be equal to the number of free parameters ($n p$) of the model. For ARX model, np = sum(sum([na nb]).

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0
Use arxRegul to automatically determine Lambda and R values.

'Advanced'

Advanced is a structure with the following fields:

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt (eps)

Output Arguments

opt

Option set containing the specified options for arx.

Examples

Create Default Options Set for ARX Estimation

opt = arxOptions;

Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation. Set Display to 'on'.
opt = arxOptions('InitialCondition','zero','Display','on');
Alternatively, use dot notation to set the values of opt.

```
opt = arxOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';
```


See Also

arx | arxRegul | idfilt

arxRegul

Determine regularization constants for ARX model estimation

Syntax

```
[lambda,R] = arxRegul(data,orders)
[lambda,R] = arxRegul(data,orders,options)
[lambda,R] = arxRegul(data,orders,Name,Value)
[lambda,R] = arxRegul(data,orders,options,Name,Value)
```


Description

[lambda, R] = arxRegul(data,orders) returns the regularization constants used for ARX model estimation. Use the regularization constants in arxOptions to configure the regularization options for ARX model estimation.
[lambda,R] = arxRegul(data,orders,options) specifies regularization options such as regularization kernel, and I/O offsets.
[lambda,R] = arxRegul(data,orders,Name, Value) specifies model structure attributes, such as noise integrator and input delay, using one or more Name,Value pair arguments.
[lambda,R] = arxRegul(data,orders,options,Name,Value) specifies both regularization options and model structure attributes.

Examples

Determine Regularization Constants for ARX Model Estimation Using Default Kernel

```
load iddata1 z1;
orders = [10 10 1];
[Lambda, R] = arxRegul(z1,orders);
```

The ARX model is estimated using the default regularization kernel TC.

Use the Lambda and R values for ARX model estimation.

```
opt = arxOptions;
opt.Regularization.Lambda = Lambda;
opt.Regularization.R = R;
model = arx(z1, orders, opt);
```


Specify a Regularization Kernel

Specify ' DC ' as the regularization kernel and obtain a regularized ARX model of order [1010 1].

```
load iddata1 z1;
```

orders = [10 10 1];
option = arxRegulOptions('RegulKernel', 'DC');
[Lambda, R] = arxRegul(z1,orders,option);

Use the Lambda and R values for ARX model estimation.

```
arxOpt = arxOptions;
arxOpt.Regularization.Lambda = Lambda;
arxOpt.Regularization.R = R;
model = arx(z1, orders, arxOpt);
```


Specify Noise Source Integrator

Specify to include a noise source integrator in the noise component of the model.

```
load iddata1 z1;
orders = [10 10 1];
[Lambda, R] = arxRegul(z1,orders,'IntegrateNoise',true);
```


Specify Regularization Kernel And Noise Integrator

Specify the regularization kernel and include a noise source integrator in the noise component of the model.

```
load iddata1 z1;
orders = [10 10 1];
opt = arxRegulOptions('RegulKernel', 'DC');
[Lambda, R] = arxRegul(z1,orders,opt,'IntegrateNoise',true);
```

- "Estimate Regularized ARX Model Using System Identification App"

Input Arguments

data - Estimation data
iddata object

Estimation data, specified as an iddata object.

orders - ARX model orders

matrix of nonnegative integers
ARX model orders [na nb nc], specified as a matrix of nonnegative integers. See the arx reference page for more information on model orders.

options - Regularization options

arxRegulOptions options set
Regularization options, specified as an options set you create using arxRegulOptions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [Lambda, R] = arxRegul(z1,orders,option,'InputDelay', 10);

'InputDelay' - Input delay

O (default) | positive integer
Input delay, specified as a positive, nonzero numeric value representing the number of samples.

Example: [Lambda, R] = arxRegul(z1,orders,'InputDelay',10);
Data Types: double

```
'IntegrateNoise' - Noise source integrator
false (default)| true
```

Noise source integrator, specified as a logical. Specifies whether the noise source e(t) should contain an integrator. The default is false, indicating the noise integrator is off. To turn it on, change the value to true.

Example: [Lambda, R] = arxRegul(z1,orders,'IntegrateNoise',true);
Data Types: logical

Output Arguments

lambda - Constant that determines bias versus variance trade-off positive scalar

Constant that determines the bias versus variance trade-off, returned as a positive scalar.

R - Weighting matrix
 vector of nonnegative numbers | square positive semi-definite matrix

Weighting matrix, returned as a vector of nonnegative numbers or a positive definite matrix.

More About

Algorithms

Without regularization, the ARX model parameters vector θ is estimated by solving the normal equation:
$\left(J^{T} J\right) \theta=J^{T} y$
where J is the regressor matrix and y is the measured output. Therefore,
$\theta=\left(J^{T} J\right)^{-1} J^{T} y$.
Using regularization adds a regularization term:
$\theta=\left(J^{T} J+\lambda R\right)^{-1} J^{T} y$
where, λ and R are the regularization constants. See arxOptions for more information on the regularization constants.

- "Regularized Estimates of Model Parameters"

References

[1] T. Chen, H. Ohlsson, and L. Ljung. "On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited", Automatica, Volume 48, August 2012.

See Also
arx | arxOptions | arxRegulOptions

arxRegulOptions

Option set for arxRegul

Syntax

```
opt = arxRegulOptions
opt = arxRegulOptions(Name,Value)
```


Description

opt $=$ arxRegulOptions creates a default options set for arxRegul.
opt = arxRegulOptions(Name, Value) creates an options set with the options specified by one or more name-value pair arguments.

Examples

Create Default Options Set for Determining Regularization Constants

```
opt = arxRegulOptions;
```

Specify Regularizing Kernel for ARX Model Estimation

```
opt = arxRegulOptions('RegulKernel', 'DC');
```


Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: option = arxRegulOptions('RegulKernel', 'DC') specifies 'DC' as the regularization kernel.

```
'RegulKernel' - Regularization kernel
'TC'(default) | 'SE' | 'SS' | 'HF' | 'DI' | 'DC'
```

Regularization kernel, specified as one of the following strings:

- 'TC ' - Tuned and correlated kernel
- 'SE' - Squared exponential kernel
- 'SS' - Stable spline kernel
- 'HF ' - High frequency stable spline kernel
- 'DI ' - Diagonal kernel
- 'DC' - Diagonal and correlated kernel

The specified kernel is used for regularized estimation of impulse response for all inputoutput channels. Regularization reduces variance of estimated model coefficients and produces a smoother response by trading variance for bias.

For more information about these choices, see [1].
Data Types: char

' InputOffset ' - Offset levels present in the input signals of the estimation data [] (default) | vector | matrix

Input signal offset level of time-domain estimation data, specified as one of the following:

- An Nu-element column vector, where Nu is the number of inputs. For multiexperiment data, specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value InputOffset (i, j) is subtracted from the $i^{\text {th }}$ input signal of the $j^{\text {th }}$ experiment.
- [] - No offsets.

Data Types: double

```
'OutputOffset' - Output signal offset levels
[] (default) | vector | matrix
```

Output signal offset level of time-domain estimation data, specified as one of the following:

- An Ny-element column vector, where Ny is the number of outputs. For multiexperiment data, specify a Ny-by-Ne matrix, where Ne is the number of experiments. The offset value OputOffset (i, j) is subtracted from the $i^{\text {th }}$ output signal of the $j^{\text {th }}$ experiment.
- [] — No offsets.

The specified values are subtracted from the output signals before using them for estimation.

Data Types: double

'Advanced ' - Advanced estimation options

structure
Advanced options for regularized estimation, specified as a structure with the following fields:

- MaxSize - Maximum allowable size of Jacobian matrices formed during estimation. Specify a large positive number.

Default: 250e3

- SearchMethod - Search method for estimating regularization parameters. Must be one of the following strings:
- 'fmincon': Trust-region-reflective constrained minimizer. Requires Optimization Toolbox software. In general, 'fmincon' is better than 'gn' for handling bounds on regularization parameters that are imposed automatically during estimation.
- 'gn': Quasi-Newton line search

Default: 'fmincon'
If you do not have the Optimization Toolbox software, the default is 'gn'.

Data Types: struct

Output Arguments

opt - Regularization options

arxRegulOptions options set

Regularization options, returned as an arxRegulOptions options set.

More About

- "Regularized Estimates of Model Parameters"

References

[1] T. Chen, H. Ohlsson, and L. Ljung. "On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited", Automatica, Volume 48, August 2012.

See Also

arxRegul

arxstruc

Compute and compare loss functions for single-output ARX models

Syntax

```
V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)
```


Arguments

ze

Estimation data set can be iddata or idfrd object.

zv

Validation data set can be iddata or idfrd object.

NN

Matrix defines the number of different ARX-model structures. Each row of NN is of the form:
nn = [na nb nk]
maxsize
Specifies the maximum number of elements in a segment when input-output data is split into segments.

If larger matrices are needed, the software will use loops for calculations. Use this option to manage the trade-off between memory management and program execution speed. The original data matrix must be smaller than the matrix specified by maxsize.
maxsize must be a positive integer.

Description

Note: Use arxstruc for single-output systems only. arxstruc supports both singleinput and multiple-input systems.
$\mathrm{V}=$ arxstruc (ze, zv,NN) returns V, which contains the loss functions in its first row. The remaining rows of V contain the transpose of NN, so that the orders and delays are given just below the corresponding loss functions. The last column of V contains the number of data points in ze.
$\mathrm{V}=\operatorname{arxstruc}(z e, z v, N N, m a x s i z e)$ uses the additional specification of the maximum data size.
with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.

The output argument V is best analyzed using selstruc. The selection of a suitable model structure based on the information in v is normally done using selstruc.

Examples

This example uses the simulation data from a second-order idpoly model with additive noise. The data is split into two parts, where one part is the estimation data and the other is the validation data. You select the best model by comparing the output of models with orders ranging between 1 and 5 with the validating data. All models have an input-to-output delay of 1 .

```
% Create an ARX model for generaing data:
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
% Generate a random input signal:
u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));
% Simulate the output signal from the model m0:
y = sim(m0, [u e]);
z = [y,u]; % analysis data
NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);
```


More About

Tips

Each of ze and $z v$ is an iddata object containing output-input data. Frequency-domain data and idfrd objects are also supported. Models for each of the model structures defined by NN are estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are then computed for these models when applied to the validation data set zv. The data sets ze and zv need not be of equal size. They could, however, be the same sets, in which case the computation is faster.

See Also

| arx | idpoly | ivstruc | selstruc | struc

balred

Model order reduction

Syntax

```
rsys = balred(sys,ORDERS)
rsys = balred(sys,ORDERS,BALDATA)
rsys = balred(___,opts)
```


Description

rsys = balred(sys,ORDERS) computes a reduced-order approximation rsys of the LTI model sys. The desired order (number of states) for rsys is specified by ORDERS. You can try multiple orders at once by setting ORDERS to a vector of integers, in which case rsys is a vector of reduced-order models. balred uses implicit balancing techniques to compute the reduced- order approximation rsys. Use hsvd to plot the Hankel singular values and pick an adequate approximation order. States with relatively small Hankel singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable parts using stabsep, and only the stable part is approximated. Use balredOptions to specify additional options for the stable/unstable decomposition.

This command requires Control System Toolbox ${ }^{\text {TM }}$ license. sys can only be an identified state-space model (idss). The reduced-order model is also an idss model.
rsys $=$ balred(sys, ORDERS, BALDATA) uses balancing data returned by hsvd. Because hsvd does most of the work needed to compute rsys, this syntax is more efficient when using hsvd and balred jointly.
rsys = balred(\qquad ,opts) computes the model reduction using the specified options for the stable/unstable decomposition and state elimination method. Use the balredOptions command to create the option setopts.

Note: The order of the approximate model is always at least the number of unstable poles and at most the minimal order of the original model (number NNZ of nonzero Hankel singular values using an eps-level relative threshold)

More About

- "Why Simplify Models?"

References

[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular Perturbation Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp. 1062-1065.

See Also

balredOptions | hsvd | order | minreal | sminreal

Related Examples

- "Approximate Model with Lower-Order Model"
- "Approximate Model with Unstable or Near-Unstable Pole"

bandwidth

Frequency response bandwidth

Syntax

```
fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)
```


Description

$\mathrm{fb}=$ bandwidth(sys) computes the bandwidth fb of the SISO "dynamic system model" sys, defined as the first frequency where the gain drops below 70.79 percent (-3 dB) of its DC value. The frequency fb is expressed in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to approximate the DC gain.
This command requires a Control System Toolbox license.
$\mathrm{fb}=$ bandwidth(sys, dbdrop) specifies the critical gain drop in dB . The default value is -3 dB , or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array of the same size such that

```
fb(j1,...,jp) = bandwidth(sys(:,:,j1,\ldots,.,jp))
```

See Also
dcgain | issiso

bi

Estimate Box-Jenkins polynomial model using time domain data

Syntax

```
sys = bj(data, [nb nc nd nf nk])
sys = bj(data,[nb nc nd nf nk], Name,Value)
sys = bj(data, init_sys)
sys = bj(data, ___, opt)
```


Description

sys = bj(data, [nb nc nd nf nk]) estimates a Box-Jenkins polynomial model, sys, using the time domain data, data. [nb nc nd nf nk] define the orders of the polynomials used for estimation.
sys = bj(data,[nb nc nd nf nk], Name, Value) estimates a polynomial model with additional options specified by one or more Name,Value pair arguments.
sys = bj(data, init_sys) estimates a Box-Jenkins polynomial using the polynomial model init_sys to configure the initial parameterization of sys.
sys = bj(data, \qquad , opt) estimates a Box-Jenkins polynomial using the option set, opt, to specify estimation behavior.

Input Arguments

data
Estimation data.
data is an iddata object containing the input and output signal values.

Default:

[nb nc nd nf nk]

A vector of matrices containing the orders and delays of the Box-Jenkins model. Matrices must contain nonnegative integers.

- nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)
- nc is the order of the C polynomial plus 1 (Ny-by-1 matrix)
- nd is the order of the D polynomial plus 1 (Ny-by- 1 matrix)
- $n f$ is the order of the F polynomial plus 1 (Ny-by-Nu matrix)
- nk is the input delay (in number of samples, Ny-by-Nu matrix) where Nu is the number of inputs and Ny is the number of outputs.

opt

Estimation options.
opt is an options set that configures, among others, the following:

- estimation objective
- initial conditions
- numerical search method to be used in estimation

Use bjOptions to create the options set.

init_sys

Polynomial model that configures the initial parameterization of sys.
init_sys must be an idpoly model with the Box-Jenkins structure that has only B, C, D and F polynomials active. bj uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for $B(q), F(q), C(q)$ and $D(q)$.

To specify an initial guess for, say, the $C(q)$ term of init_sys, set init_sys.Structure.c.Value as the initial guess.

To specify constraints for, say, the $B(q)$ term of init_sys:

- set init_sys.Structure.b.Minimum to the minimum $B(q)$ coefficient values
- set init_sys.Structure.b.Maximum to the maximum $B(q)$ coefficient values
- set init_sys.Structure.b. Free to indicate which $B(q)$ coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InputDelay'

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

'ioDelay'

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

'IntegrateNoise'

Logical specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length $N y$, where $N y$ is the number of outputs.
Setting IntegrateNoise to true for a particular output results in the model:

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} \frac{e(t)}{1-q^{-1}}
$$

Where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
Default: false ($\mathrm{Ny}, 1$) ($N y$ is the number of outputs)

Output Arguments

sys

Identified polynomial model of Box-Jenkins structure.
sys is a discrete-time idpoly model which encapsulates the identified polynomial model.

Examples

Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins model from measured data.

```
load iddata1 z1;
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
sys = bj(z1,[nb nc nd nf nk]);
```

sys is a discrete-time idpoly model with estimated coefficients. The order of sys is as described by nb, nc, nd, nf, and nk.

Use "getpvec" to obtain the estimated parameters and getcov to obtain the covariance associated with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins model from measured data.

```
load iddata8
nb = [2 1 1];
nc = 1;
nd = 1;
nf = [l2 1 2];
nk = [5 10 15];
sys = bj(z8,[nb nc nd nf nk]);
```

sys estimates the parameters of a model with three inputs and one output. Each of the inputs has a delay associated with it.

Estimate Box-Jenkins Model Using Regularization

Estimate a regularized BJ model by converting a regularized ARX model.
Load data.
load regularizationExampleData.mat mOsimdata
Estimate an unregularized BJ model of order 30.

```
m1 = bj(mOsimdata(1:150), [15 15 15 15 1]);
```

Estimate a regularized BJ model by determining Lambda value by trial and error.

```
opt = bjOptions;
opt.Regularization.Lambda = 1;
m2 = bj(mOsimdata(1:150), [15 15 15 15 1], opt);
```

Obtain a lower-order BJ model by converting a regularized ARX model followed by order reduction.

```
opt1 = arxOptions;
[L,R] = arxRegul(mOsimdata(1:150), [30 30 1]);
```

```
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(mOsimdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));
```

Compare the model outputs against data.
compare(mOsimdata(150:end), m1, m2, mr, ... compareOptions('InitialCondition','z'));

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins model while configuring some estimation options.

Generate estimation data.

```
B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
sys0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sys0,[u e]);
data = [y u];
```

data is a single-input, single-output data set created by simulating a known model.
Estimate initial Box-Jenkins model.

```
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
init_sys = bj(data,[2 2 2 2 1]);
```

Create an estimation option set to refine the parameters of the estimated model.

```
opt = bjOptions;
opt.Display = 'on';
opt.SearchOption.MaxIter = 50;
```

opt is an estimation option set that configures the estimation to iterate 50 times at most and display the estimation progress.

Reestimate the model parameters using the estimation option set.
sys = bj(data,init_sys,opt);
sys is estimated using init_sys for the initial parameterization for the polynomial coefficients.

To view the estimation result, enter sys. Report.

Estimate MIMO Box-Jenkins Model

Estimate a multi-input, multi-output Box-Jenkins model from estimated data.

Load measured data.

```
load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];
```

data contains the measured data for two inputs and two outputs.
Estimate the model.

```
nb = [2 2; 3 4];
nc = [2;2];
nd = [2;2];
nf = [1 0; 2 2];
nk = [1 1; 0 0];
sys = bj(data, [nb nc nd nf nk]);
```

The polynomial order coefficients contain one row for each output.
sys is a discrete-time idpoly model with two inputs and two outputs.

Alternatives

To estimate a continuous-time model, use:

- tfest - returns a transfer function model
- ssest - returns a state-space model
- bj to first estimate a discrete-time model and convert it a continuous-time model using d2c.

More About

Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

$$
y(t)=\sum_{i=1}^{n u} \frac{B_{i}(q)}{F_{i}(q)} u_{i}\left(t-n k_{i}\right)+\frac{C(q)}{D(q)} e(t)
$$

where $n u$ is the number of input channels.
The orders of Box-Jenkins model are defined as follows:

$$
\begin{aligned}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{aligned}
$$

- "Regularized Estimates of Model Parameters"

References

[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

See Also

armax | arx | bjoptions | compare | d2c | forecast | iddata | idpoly | iv4 | oe | polyest | sim | ssest | tfest

bjOptions

Option set for bj

Syntax

```
opt = bjOptions
opt = bjOptions(Name,Value)
```


Description

opt $=$ bjOptions creates the default options set for $b j$.
opt $=$ bjOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition'

Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial conditions are set to zero.
- 'estimate ' - The initial conditions are treated as independent estimation parameters.
- 'backcast ' - The initial conditions are estimated using the best least squares fit.
- 'auto ' - The software chooses the method to handle initial conditions based on the estimation data.

Default: 'auto'

'Focus'

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.

- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

'Display ' - Specify whether to display the estimation progress
 'off' (default) | 'on'

Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

'InputOffset ' - Remove offset from time-domain input data during estimation
 [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' OutputOffset ' - Remove offset from time-domain output data during estimation
 [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'Regularization'

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0

- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

'SearchMethod'

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:

- 'gn' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J))*norm(J) are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- 'gna' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where $s v$ are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). This value is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. This value is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method so that the next parameter value is pinv $(H+d * I) * g r a d$ from the previous one. H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can handle only the Trace criterion.
- 'grad ' - The steepest descent gradient search method.
- 'auto ' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

'SearchOption'

Options set for the search algorithm.

SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'Im', 'grad', or 'auto'

Field Name	Description
Toleran	Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value. Default: 0.01
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance. Setting MaxIter $=0$ returns the result of the start-up procedure. Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model. Default: 20
Advance	Advanced search settings. Specified as a structure with the following fields:
	Field Name Description
	GnPinvCon:Singular values of the Jacobian matrix that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'.

	Description	
	Field Name	Description
		GnPinvConst must be a positive, real value. Default: 10000
	InitGnaTo.	Initial value of gamma. Applicable when SearchMethod is 'gna'. Default: 0.0001
	LMStartVa	Starting value of search-direction length d in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. Default: 0.001
	LMStep	Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. Default: 2
	MaxBisect	Maximum number of bisections used by the line search along the search direction. Default: 25
	MaxFunEva.	Iterations stop if the number of calls to the model file exceeds this value. MaxFunEvals must be a positive, integer value. Default: Inf
	MinParCha	Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. Default: 0
	RelImprov	Iterations stop if the relative improvement of the criterion function is less than RelImprovement.

Field Name	Description	
	Field Name	Description
		RelImprovement must be a positive, integer value. Default: 0
	StepReduc	Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until either MaxBisections tries are completed or a lower value of the criterion function is obtained. StepReduction must be a positive, real value that is greater
Default: 2		

SearchOption structure when SearchMethod is specified as 'Isqnonlin'

Field Name	Description
TolFun	Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values. The value of TolFun is the same as that of sys.SearchOption. Advanced. TolFun. Default: 1e-5
TolX	Termination tolerance on the estimated parameter values. The value of TolX is the same as that of sys.SearchOption. Advanced. TolX. Default: 1e-6
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.

```
Field Description
Name
    The value of MaxIter is the same as that of
    sys.SearchOption.Advanced.MaxIter.
    Default: }2
Advance Options set for lsqnonlin.
    For more information, see the Optimization Options table in "Optimization
    Options".
    Use optimset('lsqnonlin') to create an options set for lsqnonlin, and
    then modify it to specify its various options.
```


'Advanced'

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

$$
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
$$

- $y_{\text {meas }}$ is the measured output.
- $y_{p, z}$ is the predicted output of a model estimated using zero initial states.
- $y_{p, e}$ is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto '.
Default: 1.05

Output Arguments

opt

Option set containing the specified options for bj .

Examples

Create Default Options Set for Box-Jenkins Estimation

```
opt = bjOptions;
```


Specify Options for Box-Jenkins Estimation

Create an options set for bjusing zero initial conditions for estimation. Set Display to 'on'.

```
opt = bjOptions('InitialCondition','zero','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';
```


References

[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for
Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.

See Also

bj | idfilt

blkdiag

Block-diagonal concatenation of models

Syntax

```
sys = blkdiag(sys1,sys2,...,sysN)
```


Description

sys = blkdiag(sys1,sys2,...,sysN) produces the aggregate system

$$
\left[\begin{array}{cccc}
\text { sys } 1 & 0 & . . & 0 \\
0 & \text { sys } 2 & . & : \\
: & \cdot & . & 0 \\
0 & . . & 0 & \text { sysN } N
\end{array}\right]
$$

blkdiag is equivalent to append.

Examples

The commands
sys1 = tf(1,[10]);
sys2 = ss(1,2,3,4);
sys = blkdiag(sys1,10,sys2)
produce the state-space model
$\mathrm{a}=$

	x1	x2
x1	0	0
x2	0	1

b =
u1 u2 u3

```
    x1 1 0 0
    x2 0}0
c =
    l }\begin{array}{lrr}{\textrm{x}1}&{x2}\\{y1}&{1}&{0}
    y2 0}
    y3 0}
d =
    M
    y2 0
    y3 0
Continuous-time model.
```


See Also

append | series | parallel | feedback

bode

Bode plot of frequency response, magnitude and phase of frequency response

Syntax

```
bode(sys)
bode(sys1,...,sysN)
bode(sys1,PlotStyle1,...,sysN,PlotStyleN)
bode(...,w)
[mag,phase] = bode(sys,w)
[mag,phase,wout] = bode(sys)
[mag,phase,wout,sdmag,sdphase] = bode(sys)
```


Description

bode (sys) creates a Bode plot of the frequency response of a "dynamic system model" sys. The plot displays the magnitude (in dB) and phase (in degrees) of the system response as a function of frequency.

When sys is a multi-input, multi-output (MIMO) model, bode produces an array of Bode plots, each plot showing the frequency response of one I/O pair.
bode automatically determines the plot frequency range based on system dynamics.

bode (sys1, ...,sysN) plots the frequency response of multiple dynamic systems in a single figure. All systems must have the same number of inputs and outputs.
bode(sys1,PlotStyle1, ...,sysN, PlotStyleN) plots system responses using the color, linestyle, and markers specified by the PlotStyle strings.
bode (..., w) plots system responses at frequencies determined by w.

- If wis a cell array \{wmin, wmax \}, bode (sys,w) plots the system response at frequency values in the range \{wmin, wmax\}.
- If w is a vector of frequencies, bode (sys,w) plots the system response at each of the frequencies specified in w.
[mag, phase] = bode(sys,w) returns magnitudes mag in absolute units and phase values phase in degrees. The response values in mag and phase correspond to the frequencies specified by w as follows:
- If w is a cell array \{wmin,wmax\}, [mag, phase] = bode(sys,w) returns the system response at frequency values in the range \{wmin, wmax\}.
- If w is a vector of frequencies, [mag, phase] = bode(sys,w) returns the system response at each of the frequencies specified in w.
[mag,phase, wout] = bode(sys) returns magnitudes, phase values, and frequency values wout corresponding to bode(sys).
[mag, phase, wout,sdmag, sdphase] = bode(sys) additionally returns the estimated standard deviation of the magnitude and phase values when sys is an "identified model" and [] otherwise.

Input Arguments

sys

"Dynamic system model", such as a Numeric LTI model, or an array of such models.

PlotStyle

Line style, marker, and color of both the line and marker, specified as a one-, two-, or three-part string enclosed in single quotes (' '). The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.

For more information about configuring the PlotStyle string, see "Specify Line Style, Color, and Markers" in the MATLAB documentation.

w

Input frequency values, specified as a row vector or a two-element cell array.
Possible values of w:

- Two-element cell array \{wmin, wmax\}, where wmin is the minimum frequency value and wmax is the maximum frequency value.
- Row vector of frequency values.

For example, use logspace to generate a row vector with logarithmically-spaced frequency values.

Specify frequency values in radians per TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.

Output Arguments

mag

Bode magnitude of the system response in absolute units, returned as a 3-D array with dimensions (number of outputs) \times (number of inputs) \times (number of frequency points).

- For a single-input, single-output (SISO) sys, mag $(1,1, k)$ gives the magnitude of the response at the kth frequency.
- For MIMO systems, mag (i, j,k) gives the magnitude of the response from the j th input to the ith output.

You can convert the magnitude from absolute units to decibels using:

```
magdb = 20*log10(mag)
```


phase

Phase of the system response in degrees, returned as a 3-D array with dimensions are (number of outputs) \times (number of inputs) \times (number of frequency points).

- For SISO sys, phase ($1,1, k$) gives the phase of the response at the k th frequency.
- For MIMO systems, phase (i, j,k) gives the phase of the response from the j th input to the ith output.

wout

Response frequencies, returned as a row vector of frequency points. Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same dimensions as mag. If sys is not an "identified LTI model", sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same dimensions as phase.
If sys is not an "identified LTI model", sdphase is [].

Examples

Bode Plot of Dynamic System

Create a Bode plot of the following continuous-time SISO dynamic system.

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

H = tf([1 0.17 .5$\left.],\left[\begin{array}{llll}1 & 0.12 & 9 & 0\end{array}\right]\right) ;$ bode (H)

Bode Diagram

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create a Bode plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

bode (H, $\{0.1,10\}$)

Bode Diagram

The cell array $\{0.1,10\}$ specifies the minimum and maximum frequency values in the Bode plot. When you provide frequency bounds in this way, the software selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.

```
w = logspace(-1,1,100);
bode(H,w)
```


logspace defines a logarithmically spaced frequency vector in the range of $0.1-10 \mathrm{rad} / \mathrm{s}$.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
```

Create a Bode plot that displays both systems.

```
bode(H,Hd)
```

Bode Diagram

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the system.

Bode Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode plot using the PlotStyle input arguments.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
bode(H,'r',Hd,'b--')
```


The string ' r ' specifies a solid red line for the response of H. The string ' $b-$ - ' specifies a dashed blue line for the response of Hd .

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a dynamic system.
$H=t f\left(\left[\begin{array}{lll}1 & 0.1 & 7.5\end{array}\right],\left[\begin{array}{lllll}1 & 0.12 & 9 & 0 & 0\end{array}\right]\right.$;
[mag phase wout] = bode(H);
Because H is a SISO model, the first two dimensions of mag and phase are both 1 . The third dimension is the number of frequencies in wout.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output data, to a nonparametric model identified using the same data.

Identify parametric and non-parametric models based on data.

```
load iddata2 z2;
```

w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
sys_np is a non-parametric identified model. sys_p is a parametric identified model.
Create a Bode plot that includes both systems.

```
bode(sys_np,sys_p,w);
legend('sys-np','sys-p')
```


Bode Diagram

Obtain Magnitude and Phase Standard Deviation Data of Identified Model

Compute the standard deviation of the magnitude and phase of an identified model. Use this data to create a 3σ plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for the magnitude and phase of the frequency response.

```
load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);
[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);
```

sys_p is an identified transfer function model. sdmag and sdphase contain the standard deviation data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 3σ plot corresponding to the confidence region.

```
mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx(w,mag,'b',w,mag+3*sdmag,'k:',w,mag-3*sdmag,'k:');
```


Alternatives

Use bodeplot when you need additional plot customization options.

More About

Algorithms

bode computes the frequency response using these steps:
1 Computes the zero-pole-gain (zpk) representation of the dynamic system.
2 Evaluates the gain and phase of the frequency response based on the zero, pole, and gain data for each input/output channel of the system.
a For continuous-time systems, bode evaluates the frequency response on the imaginary axis $s=j \omega$ and considers only positive frequencies.
b For discrete-time systems, bode evaluates the frequency response on the unit circle. To facilitate interpretation, the command parameterizes the upper half of the unit circle as
$z=e^{j \omega T_{s}}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\pi}{T_{s}}$,
where T_{s} is the sampling time. ω_{N} is the Nyquist frequency. The equivalent continuous-time frequency ω is then used as the x-axis variable. Because $H\left(e^{j \omega T_{s}}\right)$ is periodic and has a period $2 \omega_{N}$, bode plots the response only up to the Nyquist frequency ω_{N}. If you do not specify a sampling time, bode uses $T_{s}=$ 1.

- "Dynamic System Models"

See Also

spectrum | bodeplot | freqresp | nichols | nyquist

bodemag

Bode magnitude response of LTI models

Syntax

```
bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)
bodemag(sys1,sys2, ...,sysN,w)
```


Description

bodemag (sys) plots the magnitude of the frequency response of the "dynamic system model" sys (Bode plot without the phase diagram). The frequency range and number of points are chosen automatically.
bodemag (sys, \{wmin, wmax\}) draws the magnitude plot for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys).
bodemag (sys,w) uses the user-supplied vector W of frequencies, in rad/TimeUnit, at which the frequency response is to be evaluated.
bodemag (sys1, sys2, ...,sysN,w) shows the frequency response magnitude of several models sys1, sys2, . . . sysN on a single plot. The frequency vector w is optional. You can also specify a color, line style, and marker for each model. For example:

```
bodemag(sys1,'r',sys2,'y--',sys3,'gx')
```


See Also

bode | ltiview

bodeoptions

Create list of Bode plot options

Syntax

P = bodeoptions
P = bodeoptions('cstprefs')

Description

P = bodeoptions returns a default set of plot options for use with the bodeplot. You can use these options to customize the Bode plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.

P = bodeoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation. This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

The following table summarizes the Bode plot options.

Option	Description
Title, XLabel, YLabel	Label text and style, specified as a structure with the following fields: - String — Label text, specified as a string - FontSize — Default: 8 - FontWeight — Default: 'Normal' - Font Angle - Default: 'Normal' - Color - Vector of RGB values ranging from 0 to 1. Default: [0,0,0] - Interpreter - Default: 'tex'
TickLabel	Tick label style, specified as a structure with the following fields:

Option	Description		
	- FontSize Default: 8 - FontWeight - Default: 'Normal' - Font Angle - Default: 'Normal' - Color - Vector of RGB values ranging from 0 to 1 . Default: [0,0,0]		
Grid	Show or hide the grid Specified as one of the following strings: 'off' \| 'on' Default: 'off'		
XlimMode, YlimMode	Axis limit modes. Default: ' auto '		
Xlim, Ylim	Axes limits, specified as an array of the form [min, max]		
IOGrouping	Grouping of input-output pairs Specified as one of the following strings: ' none ' \|'inputs'	'output'	'all' Default: 'none'
InputLabels, OutputLabels	Input and output label styles		
InputVisible, OutputVisible	Visibility of input and output channels		
ConfidenceRegionNumbe	Number of standard deviations to use to plotting the response confidence region (identified models only). Default: 1.		

Option	Description
FreqUnits	Frequency units, specified as one of the following strings: - 'Hz' - 'rad/second' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day' - 'cycles/week' - 'cycles/month' - 'cycles/year' Default: 'rad/s' You can also specify 'auto' which uses frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property. For

Option	Description
	multiple systems with different time units, the units of the first system are used.
FreqScale	Frequency scale Specified as one of the following strings: 'linear' \| ' log' Default: ' \log '
MagUnits	Magnitude units Specified as one of the following strings: ' dB ' \| 'abs ' Default: 'dB'
MagScale	Magnitude scale Specified as one of the following strings: 'linear' \| ' log' Default: 'linear'
MagVisible	Magnitude plot visibility Specified as one of the following strings: 'on ' \| 'off' Default: ' on '
MagLowerLimMode	Enables a lower magnitude limit Specified as one of the following strings: 'auto ' \| 'manual' Default: 'auto'
MagLowerLim	Specifies the lower magnitude limit
PhaseUnits	Phase units Specified as one of the following strings: 'deg ' \| 'rad' Default: 'deg '
PhaseVisible	Phase plot visibility Specified as one of the following strings: 'on' \| 'off' Default: ' on '
PhaseWrapping	Enables phase wrapping Specified as one of the following strings: 'on' \| 'off' Default: 'off'
PhaseMatching	Enables phase matching Specified as one of the following strings: 'on ' \| 'off' Default: ' off'
PhaseMatchingFreq	Frequency for matching phase
PhaseMatchingValue	The value to which phase responses are matched closely

Examples

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead of the default radians/second. Otherwise, the plot uses the settings that are saved in the toolbox preferences.

First, create an options set based on the toolbox preferences.
opts = bodeoptions('cstprefs');
Change properties of the options set.
opts. PhaseVisible = 'off';
opts.FreqUnits = 'Hz';
Create a plot using the options.
h = bodeplot(tf(1,[1,1]),opts);

Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override the toolbox preferences.

Custom Plot Settings Independent of Preferences

Create a Bode plot that uses 14-point red text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set.
opts = bodeoptions;
Change properties of the options set.

```
opts.Title.FontSize = 14;
opts.Title.Color = [1 0 0];
opts.FreqUnits = 'Hz';
```

Create a plot using the options.
h = bodeplot(tf(1,[1,1]),opts);

Bode Diagram

Because opts begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

bodeplot

Plot Bode frequency response with additional plot customization options

Syntax

```
h = bodeplot(sys)
bodeplot(sys)
bodeplot(sys1,sys2,...)
bodeplot(AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)
```


Description

$\mathrm{h}=$ bodeplot(sys) plot the Bode magnitude and phase of the "dynamic system model" sys and returns the plot handle h to the plot. You can use this handle to customize the plot with the getoptions and setoptions commands.
bodeplot (sys) draws the Bode plot of the model sys. The frequency range and number of points are chosen automatically.
bodeplot (sys1, sys2, . .) graphs the Bode response of multiple models sys1,sys2,... on a single plot. You can specify a color, line style, and marker for each model, as in

```
bodeplot(sys1,'r',sys2,'y--',sys3,'gx')
```

bodeplot (AX, ...) plots into the axes with handle AX.
bodeplot(..., plotoptions) plots the Bode response with the options specified in plotoptions. Type
help bodeoptions
for a list of available plot options. See "Match Phase at Specified Frequency." on page 1-123 for an example of phase matching using the PhaseMatchingFreq and PhaseMatchingValue options.
bodeplot (sys,w) draws the Bode plot for frequencies specified by w. When w = \{wmin, wmax\}, the Bode plot is drawn for frequencies between wmin and wmax (in rad/ TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.). When w is a user-supplied vector w of frequencies, in rad/ TimeUnit, the Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Examples

Change Bode Plot Options with Plot Handle

Generate a Bode plot.
sys $=r s s(5) ;$
h = bodeplot(sys);

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot handle, h.

```
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');
```


The plot automatically updates when you call setoptions.

Match Phase at Specified Frequency.

Create a Bode plot of a dynamic system.
sys $=\operatorname{tf}\left(1,\left[\begin{array}{ll}1 & 1\end{array}\right)\right.$;
h = bodeplot(sys);

Fix the phase at $1 \mathrm{rad} / \mathrm{s}$ to 750 degrees. To do so, get the plot properties. Then alter the properties PhaseMatchingFreq and PhaseMatchingValue to match a phase to a specified frequency.
$\mathrm{p}=$ getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue $=750$;

Update the plot.
setoptions(h, p);

The first bode plot has a phase of -45 degrees at a frequency of $1 \mathrm{rad} / \mathrm{s}$. Setting the phase matching options so that at $1 \mathrm{rad} / \mathrm{s}$ the phase is near 750 degrees yields the second Bode plot. Note that, however, the phase can only be $-45+\mathrm{N}^{*} 360$, where N is an integer, and so the plot is set to the nearest allowable phase, namely 675 degrees (or $2 * 360-45=$ 675).

Display Confidence Regions of Identified Models

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 2σ confidence regions.
load iddata1
sys1 $=$ n4sid(z1, 2) $\%$ discrete-time IDSS model of order 2

```
sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6
```

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot:

```
w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD', 2);
```

Use the context menu by right-clicking Characteristics > Confidence Region to turn on the confidence region characteristic.

Frequency Response of Identified Parametric and Nonparametric models

Compare the frequency response of a parametric model, identified from input/output data, to a nonparametric model identified using the same data.

1 Identify parametric and non-parametric models based on data.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox software. sys_np is a nonparametric identified model. sys_p is a parametric identified model.
2 Create a Bode plot that includes both systems.

```
opt = bodeoptions; opt.PhaseMatching = 'on';
```

bodeplot(sys_np,sys_p,w, opt);

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

```
See Also
showConfidence | bode | bodeoptions | getoptions | setoptions
```


c2d

Convert model from continuous to discrete time

Syntax

```
sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
sysd = c2d(sys,Ts,opts)
[sysd,G] = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,opts)
```


Description

sysd = c2d(sys,Ts) discretizes the continuous-time "dynamic system model" sys using zero-order hold on the inputs and a sample time of Ts seconds.
sysd $=$ c2d(sys,Ts,method) discretizes sys using the specified discretization method method.
sysd = c2d(sys,Ts,opts) discretizes sys using the option set opts, specified using the c2dOptions command.
[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the continuous initial conditions x_{0} and u_{0} of the state-space model sys to the discrete-time initial state vector x [0]. method is optional. To specify additional discretization options, use [sysd, G] = c2d(sys,Ts,opts).

Input Arguments

sys

Continuous-time "dynamic system model" (except frequency response data models). sys can represent a SISO or MIMO system, except that the ' matched ' discretization method supports SISO systems only.
sys can have input/output or internal time delays; however, the 'matched ' and 'impulse' methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

- idgrey models with FcnType is 'c '. Convert to idss model first.
- idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd, G] = c2d(sys,Ts,opts), sys must be a state-space model.

Ts

Sample time.

method

String specifying a discretization method:

- 'zoh' - Zero-order hold (default). Assumes the control inputs are piecewise constant over the sampling period Ts.
- ' foh ' - Triangle approximation (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period Ts.
- 'impulse' - Impulse invariant discretization.
- 'tustin' - Bilinear (Tustin) method.
- 'matched ' - Zero-pole matching method.

For more information about discretization methods, see "Continuous-Discrete Conversion Methods".

opts

Discretization options. Create opts using c2dOptions.

Output Arguments

sysd

Discrete-time model of the same type as the input system sys.

When sys is an identified (IDLTI) model, sysd:

- Includes both measured and noise components of sys. The innovations variance λ of the continuous-time identified model sys, stored in its NoiseVarianceproperty, is interpreted as the intensity of the spectral density of the noise spectrum. The noise variance in sysd is thus $\lambda / T s$.
- Does not include the estimated parameter covariance of sys. If you want to translate the covariance while discretizing the model, use translatecov.

G

Matrix relating continuous-time initial conditions x_{0} and u_{0} of the state-space model sys to the discrete-time initial state vector $x[0]$, as follows:

$$
x[0]=G \cdot\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right]
$$

For state-space models with time delays, c2d pads the matrix G with zeroes to account for additional states introduced by discretizing those delays. See "Continuous-Discrete Conversion Methods" for a discussion of modeling time delays in discretized systems.

Examples

Discretize a Transfer Function

Discretize the following continuous-time transfer function:

$$
H(s)=e^{-0.3 s} \frac{s-1}{s^{2}+4 s+5}
$$

This system has an input delay of 0.3 s . Discretize the system using the triangle (first-order-hold) approximation with sample time Ts $=0.1 \mathrm{~s}$.

```
H = tf([1 -1],[1 4 5],'InputDelay', 0.3);
Hd = c2d(H,0.1,'foh');
```

Compare the step responses of the continuous-time and discretized systems.
step(H,'-',Hd,'--')

Step Response

Discretize Model with Fractional Delay Asborbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and a $10-\mathrm{Hz}$ sampling rate.

$$
H(s)=e^{-0.25 s} \frac{10}{s^{2}+3 s+10}
$$

```
h = tf(10,[1 3 10],'iodelay',0.25);
hd = c2d(h, 0.1)
hd =
    0.01187 z^2 + 0.06408 z + 0.009721
    z^(-3) * ----------------------------------
        z^2 - 1.655 z + 0.7408
```

Sample time: 0.1 seconds
Discrete-time transfer function.

In this example, the discretized model hd has a delay of three sampling periods. The discretization algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.
step(h,'--', hd,'-')

Discretize Model With Approximated Fractional Delay

Discretize a state-space model with time delay, using a Thiran filter to model fractional delays:

```
sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model
sys.InputDelay = 2.7 % add input delay
```

This command creates a continuous-time state-space model with two states, as the output shows:
a $=$

	x 1	x 2
x 1	-4	-2

```
    x2 1 0
b =
            u1
    x1 2
    x2 0
C =
            x1 x2
    y1 0.5 1
d =
            u1
    y1 0
Input delays (listed by channel): 2.7
Continuous-time model.
```

Use c2dOptions to create a set of discretization options, and discretize the model. This example uses the Tustin discretization method.

```
opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
sysd1 = c2d(sys, 1, opt) % 1s sampling time
These commands yield the result
```

a =

		x1	x2	x3	x4
x1	-0.4286	-0.5714	-0.00265	0.06954	2.286
x2	0.2857	0.7143	-0.001325	0.03477	1.143
x3	0	0	-0.2432	0.1449	-0.1153
x4	0	0	0.25	0	0
x5	0	0	0	0.125	0

$\mathrm{b}=$
u1
$\times 1 \quad 0.002058$
x2 0.001029
x3 8
$x 4 \quad 0$
$x 50$
C =

	$x 1$	$x 2$	$x 3$	$x 4$	$x 5$
$y 1$	0.2857	0.7143	-0.001325	0.03477	1.143

```
d =
    u1
    y1 0.001029
Sampling time: 1
Discrete-time model.
```

The discretized model now contains three additional states $x 3, x 4$, and $x 5$ corresponding to a third-order Thiran filter. Since the time delay divided by the sampling time is 2.7 , the third-order Thiran filter (FractDelayApproxOrder = 3) can approximate the entire time delay.

Discretized Identified Model

Discretize an identified, continuous-time transfer function and compare its performance against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.

```
load iddata1
sys1c = tfest(z1,2);
sys1d = c2d(sys1c,0.1,'zoh');
```

Estimate a second order discrete-time transfer function.
sys2d = tfest(z1,2,'Ts',0.1);
Compare the two models.
compare(z1,sys1d,sys2d)

The two systems are virtually identical.

Build Predictor Model

Discretize an identified state-space model to build a one-step ahead predictor of its response.

```
load iddata2
sysc = ssest(z2,4);
sysd = c2d(sysc,0.1,'zoh');
[A,B,C,D,K] = idssdata(sysd);
Predictor = ss(A-K*C,[K B-K*D],C,[O D],0.1);
```

The Predictor is a two input model which uses the measured output and input signals ([z1.y z1.u]) to compute the 1-step predicted response of sysc.

More About

Tips

- Use the syntax sysd = c2d(sys,Ts,method) to discretize sys using the default options for method. To specify additional discretization options, use the syntax sysd $=\mathrm{c} 2 \mathrm{~d}(\mathrm{sys}, \mathrm{Ts}$, opts) .
- To specify the tustin method with frequency prewarping (formerly known as the ' prewarp' method), use the PrewarpFrequency option of c2dOptions.

Algorithms

For information about the algorithms for each c2d conversion method, see "ContinuousDiscrete Conversion Methods".

- "Dynamic System Models"
- "Discretize a Compensator"
- "Continuous-Discrete Conversion Methods"

See Also
c2dOptions | d2c | d2d | thiran | translatecov

c2dOptions

Create option set for continuous- to discrete-time conversions

Syntax

```
opts = c2dOptions
opts = c2dOptions('OptionName', OptionValue)
```


Description

opts = c2dOptions returns the default options for c2d.
opts = c2dOptions('OptionName', OptionValue) accepts one or more commaseparated name/value pairs that specify options for the c2d command. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

'Method'
Discretization method, specified as one of the following values:

'zoh'	Zero-order hold, where c2d assumes the control inputs are piecewise constant over the sampling period Ts.
'foh'	Triangle approximation (modified first-order hold), where c2d assumes the control inputs are piecewise linear over the sampling period Ts. (See [1], p. 228.)
'impulse'	Impulse-invariant discretization.
	Bilinear (Tustin) approximation. By default, c2d discretizes with no prewarp and rounds any fractional time delays to the nearest multiple of the sample time. To include prewarp, use the PrewarpFrequency option. To approximate fractional time delays, use theFractDelayApproxOrder option.

'matched ' Zero-pole matching method. (See [1], p. 224.) By default, c2d rounds any fractional time delays to the nearest multiple of the sample time. To approximate fractional time delays, use the FractDelayApproxOrder option.

Default: 'zoh'

'PrewarpFrequency'

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discretized system. Takes positive scalar values. A value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

'FractDelayApproxOrder'

Maximum order of the Thiran filter used to approximate fractional delays in the 'tustin' and 'matched' methods. Takes integer values. A value of 0 means that c2d rounds fractional delays to the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize two models using identical discretization options.

```
% generate two arbitrary continuous-time state-space models
sys1 = rss(3, 2, 2);
sys2 = rss(4, 4, 1);
Use c2dOptions to create a set of discretization options.
opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 3.4);
Then, discretize both models using the option set.
dsys1 = c2d(sys1, 0.1, opt); % 0.1s sampling time
dsys2 = c2d(sys2, 0.2, opt); % 0.2s sampling time
The c2dOptions option set does not include the sampling time Ts. You can use the same
discretization options to discretize systems using a different sampling time.
```


References

[1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also c2d

canon

State-space canonical realization

Syntax

csys = canon(sys,type)
[csys,T]= canon(sys,type)
csys = canon(sys,'modal', condt)

Description

csys = canon(sys, type) transforms the linear model sys into a canonical state-space model csys. The argument type specifies whether csys is in modal or companion form.
[csys, T]= canon(sys,type) also returns the state-coordinate transformation T that relates the states of the state-space model sys to the states of csys.
csys $=$ canon(sys,'modal', condt) specifies an upper bound condt on the condition number of the block-diagonalizing transformation.

Input Arguments

sys

Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take one of the two following values:

- 'modal' - convert sys to modal form.
- 'companion ' - convert sys to companion form.

condt

Positive scalar value specifying an upper bound on the condition number of the blockdiagonalizing transformation that converts sys to csys. This argument is available only when type is 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys. Setting condt $=$ Inf diagonalizes A.

Default: 1e8

Output Arguments

csys

State-space (ss) model. csys is a state-space realization of sys in the canonical form specified by type.

T

Matrix specifying the transformation between the state vector x of the state-space model sys and the state vector x_{c} of csys:
$x_{c}=T x$

This argument is available only when sys is state-space model.

Examples

This example uses canon to convert a system having doubled poles and clusters of close poles to modal canonical form.

Consider the system G having the following transfer function:

$$
G(s)=100 \frac{(s-1)(s+1)}{s(s+10)(s+10.0001)(s-(1+i))^{2}(s-(1-i))^{2}} .
$$

To create a linear model of this system and convert it to modal canonical form, enter:

```
G = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
Gc = canon(G,'modal');
```

The system G has a pair of nearby poles at $s=-10$ and $s=-10.0001$. G also has two complex poles of multiplicity 2 at $s=1+i$ and $s=1-i$. As a result, the modal form, has a block of size 2 for the two poles near $s=-10$, and a block of size 4 for the complex eigenvalues. To see this, enter the following command:

Gc.A
ans $=$

0	0	0	0	0	0	0
0	1.0000	1.0000	0	0	0	0
0	-1.0000	1.0000	2.0548	0	0	0
0	0	0	1.0000	1.0000	0	0
0	0	0	-1.0000	1.0000	0	0
0	0	0	0	0	-10.0000	8.0573
0	0	0	0	0	0	-10.0001

To separate the two poles near $s=-10$, you can increase the value of condt. For example:

```
Gc2 = canon(G,'modal',1e10);
```

Gc2.A
ans $=$

0	0	0	0	0	0	0
0	1.0000	1.0000	0	0	0	0
0	-1.0000	1.0000	2.0548	0	0	0
0	0	0	1.0000	1.0000	0	0
0	0	0	-1.0000	1.0000	0	0
0	0	0	0	0	-10.0000	0
0	0	0	0	0	0	-10.0001

The A matrix of Gc2 includes separate diagonal elements for the poles near $s=-10$. The cost of increasing the maximum condition number of A is that the B matrix includes some large values.

```
format shortE
Gc2.B
ans =
    3.2000e-001
-6.5691e-003
    5.4046e-002
```

```
-1.9502e-001
    1.0637e+000
    3.2533e+005
    3.2533e+005
```

This example estimates a state-space model that is freely parameterized and convert to companion form after estimation.

```
load icEngine.mat
z = iddata(y,u,0.04);
FreeModel = n4sid(z,4,'InputDelay',2);
CanonicalModel = canon(FreeModel, 'companion')
```

Obtain the covariance of the resulting form by running a zero-iteration update to model parameters.

```
opt = ssestOptions; opt.SearchOption.MaxIter = 0;
CanonicalModel = ssest(z, CanonicalModel, opt)
```

Compare frequency response confidence bounds of FreeModel to CanonicalModel.

```
h = bodeplot(FreeModel, CanonicalModel)
```

the bounds are identical.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues $\left(\lambda_{1}, \sigma \pm j \omega, \lambda_{2}\right)$, the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the rightmost column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . . & 0 & 1 & -\alpha_{1}
\end{array}\right]
$$

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

Algorithms

The canon command uses the bdschur command to convert sys into modal form and to compute the transformation T. If sys is not a state-space model, the algorithm first converts it to state space using ss.

The reduction to companion form uses a state similarity transformation based on the controllability matrix [1].

References

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also
ctrb|ctrbf|ss2ss

chgFreqUnit

Change frequency units of frequency-response data model

Syntax

sys_new = chgFreqUnit(sys,newfrequnits)

Description

sys_new = chgFreqUnit(sys, newfrequnits) changes units of the frequency points in sys to newfrequnits. Both Frequency and FrequencyUnit properties of sys adjust so that the frequency responses of sys and sys_new match.

Input Arguments

sys

Frequency-response data (frd, idfrd, or genfrd) model

newfrequnits

New units of frequency points, specified as one of the following strings:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'
rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output Arguments

sys_new

Frequency-response data model of the same type as sys with new units of frequency points. The frequency response of sys_new is same as sys.

Examples

This example shows how to change units of the frequency points in a frequency-response data model.

1 Create a frequency-response data model.
load AnalyzerData;
sys = frd(resp,freq);
The data file AnalyzerData has column vectors freq and resp. These vectors contain 256 test frequencies and corresponding complex-valued frequency response points, respectively. The default frequency units of sys is rad/TimeUnit, where TimeUnit is the system time units.
2 Change the frequency units.
sys1 = chgFreqUnit(sys,'rpm');
The FrequencyUnit property of sys1 is rpm.
3 Compare the Bode responses of sys and sys1.

```
bodeplot(sys,'r',sys1,'y--');
legend('sys','sys1')
```

The magnitude and phase of sys and sys1 match.

4 (Optional) Change the FrequencyUnit property of sys to compare the Bode response with the original system.

```
sys2=sys;
sys2.FrequencyUnit = 'rpm';
bodeplot(sys,'r',sys2,'gx');
legend('sys','sys2');
```

Changing the FrequencyUnit property changes the original system. Therefore, the Bode responses of sys and sys2 do not match. For example, the original corner frequency at $2 \mathrm{rad} / \mathrm{s}$ changes to 2 rpm (or $0.2 \mathrm{rad} / \mathrm{s}$).

More About

Tips

- Use chgFreqUnit to change the units of frequency points without modifying system behavior.

See Also
 idfrd | chgTimeUnit | frd

Tutorials

. "1"
1.

chgTimeUnit

Change time units of dynamic system

Syntax

sys_new = chgTimeUnit(sys,newtimeunits)

Description

sys_new = chgTimeUnit(sys,newtimeunits) changes the time units of sys to newtimeunits. The time- and frequency-domain characteristics of sys and sys_new match.

Input Arguments

sys

"Dynamic system model"

newtimeunits

New time units, specified as one of the following strings:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Default: 'seconds'

Output Arguments

sys_new

"Dynamic system model" of the same type as sys with new time units. The time response of sys_new is same as sys.

If sys is an identified linear model, both the model parameters as and their minimum and maximum bounds are scaled to the new time units.

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

```
num = [4 2];
den = [[1 3 10];
sys = tf(num,den);
```

By default, the time unit of sys is 'seconds '. Create a new model with the time units changed to minutes.

```
sys1 = chgTimeUnit(sys,'minutes');
```

This command sets the TimeUnit property of sys1 to 'minutes', without changing the dynamics. To confirm that the dynamics are unchanged, compare the step responses of sys and sys1.

```
stepplot(sys,'r',sys1,'y--');
legend('sys','sys1');
```


Step Response

The step responses are the same.
If you change the TimeUnit property of the system instead of using chgTimeUnit, the dynamics of the system do change. To see this, change the TimeUnit property of a copy of sys and compare the step response with the original system.

```
sys2 = sys;
sys2.TimeUnit = 'minutes';
stepplot(sys,'r',sys2,'gx');
legend('sys','sys2');
```


Step Response

The step responses of sys and sys2 do not match. For example, the original rise time of 0.04 seconds changes to 0.04 minutes.

- "Specify Model Time Units"

More About

Tips

- Use chgTimeUnit to change the time units without modifying system behavior.

```
See Also
chgFreqUnit | idpoly | idproc | tf | zpk | ss | frd | pid | idss | idtf
```


compare

Compare model output and measured output

Syntax

```
compare(data,sys)
compare(data,sys,prediction_horizon)
compare(data,sys,style,prediction_horizon)
compare(data,sys1, ...,sysN, prediction_horizon)
compare(data,sys1,style1,...,sysN,styleN,prediction_horizon)
compare(___,opt)
[y,fit,x0] = compare(___)
```


Description

compare (data, sys) plots the simulated response of a dynamic system model, sys, superimposed over validation data, data, for comparison. The plot also displays the normalized root mean square (NRMSE) measure of the goodness of the fit.

The matching of the input/output channels in data and sys is based on the channel names. Thus, it is possible to evaluate models that do not use all the input channels that are available in data.
compare(data, sys, prediction_horizon) compares the predicted response of sys to the measured response in data. Measured output values in data up to time t prediction_horizon are used to predict the output of sys at time t.
compare(data, sys, style, prediction_horizon) uses style to specify the line type, marker symbol, and color.
compare(data, sys1, ..., sysN, prediction_horizon) compares multiple dynamic systems responses on the same axes. compare automatically chooses colors and line styles in the order specified by the ColorOrder and LineStyleOrder properties of the current axes.
compare(data, sys1, style1, ...,sysN,styleN, prediction_horizon) compares multiple systems responses on the same axes using the line type, marker symbol, and color specified for each system.
compare (__ , opt) configures the comparison using an option set, opt.
[y,fit,x0] = compare (__) returns the model response, y, goodness of fit value, fit, and the initial states, $x 0$. No plot is generated.

Input Arguments

data

Validation data.
Specify data as either an iddata or idfrd object.
If sys is an iddata object, then data must be an iddata object with matching domain, number of experiments and time or frequency vectors.

If sys is a frequency response model (idfrd or frd), then data must be a frequency response model too.
data can represent either time- or frequency-domain data when comparing with linear models. data must be time-domain data when comparing with a nonlinear model.

For frequency domain data, the real and imaginary parts of the corresponding frequency functions are shown in separate axes.

When data is an FRD model, the frequency responses of data and sys are plotted.

sys

iddata object or "dynamic system model".
When the time or frequency units of data do not match those of sys, sys is rescaled to match the units of data.

prediction_horizon

Prediction horizon.
Specify prediction_horizon as Inf to obtain a pure simulation of the system.
prediction_horizon is ignored when sys is an iddata object, an FRD model or a dynamic system with no noise component. prediction_horizon is also ignored when using frequency response validation data.

For time-series models, use a finite value for prediction_horizon.
Default: Inf

style

Line style, marker, and color of both the linear and marker, specified as a one-, two-, or three-part string enclosed in single quotes (' '). The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.

For more information about configuring the style string, see "Specify Line Style, Color, and Markers" in the MATLAB documentation.

opt

Comparison option set.
opt is an option set created using compareOptions, which specifies options including:

- Handling of initial conditions
- Sample range for computing fit numbers
- Data offsets
- Output weighting

Output Arguments

y

Model response.
 predict the output of sys at time t.

For multimodel comparisons, y is a cell array, with one entry for each input model.

For multiexperiment data, y is a cell array, with one entry for each experiment.
For multimodel comparisons using multiexperiment data, y is an Nsys-by-Nexp cell array. Nsys is the number of models, and Nexp is the number of experiments.

If sys is a model array, then y is an array, with an entry corresponding to each model in sys and experiment in data.

fit

NRMSE fitness value.
The fit is calculated (in percentage) using:

$$
\text { fit }=100\left(1-\frac{\|y-\hat{y}\|}{\|y-\operatorname{mean}(y)\|}\right)
$$

where y is the validation data output and \hat{y} is the output of sys.
For FRD models, fit is calculated by comparing the complex frequency response. The magnitude and phase curves shown in the plot are not compared separately.

If data is an iddata object, fit is an $N y$-by- 1 vector, where $N y$ is the number of outputs.
If data is an FRD model with $N y$ outputs and $N u$ inputs, fit is an $N y$-by- $N u$ matrix. Each entry of fit corresponds to an input/output pair in sys.

For multimodel comparisons, fit is a cell array, with one entry for each input model.
For multiexperiment data, fit is a cell array, with one entry for each experiment.
For multimodel comparisons using multiexperiment data, fit is an Nsys-by-Nexp cell array. Nsys is the number of models, and Nexp is the number of experiments.

x0

Initial conditions used to compute system response.
When sys is an frd or iddata object, x 0 is [].

For multimodel comparisons, x 0 is a cell array, with one entry for each input model.
For multiexperiment data, x 0 is a cell array, with one entry for each experiment.
For multimodel comparisons using multiexperiment data, x 0 is an $N s y s$-by-Nexp cell array. Nsys is the number of models, and Nexp is the number of experiments.

Examples

Compare Estimated Model to Measured Data

Estimate a state-space model for measured data.
load iddata1 z1;
sys = ssest(z1,3);
sys, an idss model, is a continuous-time state-space model.
Compare the predicted output for 10 steps ahead to the measured output.
prediction_horizon = 10;
compare(z1,sys, prediction_horizon);

Compare Multiple Estimated Models to Measured Data

Compare the outputs of multiple estimated models, of differing types, to measured data.
This example compares the outputs of an estimated process model and an estimated Output-Error polynomial model to measured data.

Estimate a process model and an Output-Error polynomial for frequency response data.

```
load demofr % frequency response data
zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,w,Ts);
sys1 = procest(data,'P2UDZ');
```

```
sys2 = oe(data,[2 2 1]);
```

sys1, an idproc model, is a continuous-time process model. sys2, an idpoly model, is a discrete-time Output-Error model.

Compare the frequency response of the estimated models to data.
compare(data,sys1,'g',sys2,'r');

Compare Estimated Model to Data and Specify Comparison Options

Compare an estimated model to measured data. Specify that the initial conditions be estimated such that the prediction error of the observed output is minimized.

Estimate a transfer function for measured data.
load iddata1 z1;
sys = tfest(z1,3);
sys, an idtf model, is a continuous-time transfer function model.
Create an option set to specify the initial condition handling.
opt = compareOptions('InitialCondition','e');
Compare the estimated transfer function model's output to the measured data using the comparison option set.
compare(z1, sys,opt);

See Also

bode | chgFreqUnit | chgTimeUnit | compareOptions | forecast | goodnessOfFit | interp | predict | resid | sim

compareOptions

Option set for compare

Syntax

opt = compareOptions
opt = compareOptions(Name,Value)

Description

opt $=$ compareOptions creates the default options set for compare.
opt = compareOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

'Samples'

Data for which compare calculates fit values.
Specify Samples as a vector containing the data sample indices. For multiexperiment data, use a cell array of $N e$ vectors, where $N e$ is the number of experiments.

'InitialCondition'

Specify how initial conditions are handled.
InitialCondition requires one of the following values:

- 'z' — Zero initial conditions.
- 'e ' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e ', but absorbs nonzero delays into the model coefficients. Use this option for discrete-time models only.
- x0 - Numerical column vector denoting initial states. For multiexperiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the input/output history for a time interval that starts before the start time of the data used by compare. If the data used by compare is a time-series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multiexperiment data, specify io as a struct array of $N e$ elements, where $N e$ is the number of experiments.

- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only (idss, idgrey). Use x0obj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: 'e'
'InputOffset'
Removes offset from time domain input data for model response computation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.
Default: []

'OutputOffset'

Removes offset from time domain output data for model response prediction.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

'OutputWeight'

Weight of output for initial condition estimation.
OutputWeight requires one of the following values:

- [] — No weighting is used. This option is the same as using eye(Ny) for the output weight. $N y$ is the number of outputs.
- 'noise' - Inverse of the noise variance stored with the model.
- Matrix of doubles - A positive semi-definite matrix of dimension $N y$-by- $N y$. $N y$ is the number of outputs.

Default: []

Output Arguments

opt

Option set containing the specified options for compare.

Examples

Create Default Options Set for Model Comparison

Create a default options set for compare.

```
opt = compareOptions;
```


Specify Options for Model Comparison

Create an options set for compare using zero initial conditions. Set the input offset to 5 .
opt = compareOptions('InitialCondition','z','InputOffset',5);
Alternatively, use dot notation to set the values of opt.

```
opt = compareOptions;
```

opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also
 compare

Cra

Estimate impulse response using prewhitened-based correlation analysis

Syntax

```
ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)
```


Description

$i r=c r a(d a t a)$ estimates the impulse response for the time-domain data, data.
[ir, R, cl] = cra(data, M, na, plot) estimates correlation/covariance information, R, and the 99% confidence level for the impulse response, cl.
cra prewhitens the input sequence; that is, cra filters u through a filter chosen so that the result is as uncorrelated (white) as possible. The output y is subjected to the same filter, and then the covariance functions of the filtered y and u are computed and graphed. The cross correlation function between (prewhitened) input and output is also computed and graphed. Positive values of the lag variable then correspond to an influence from u to later values of y. In other words, significant correlation for negative lags is an indication of feedback from y to u in the data.

A properly scaled version of this correlation function is also an estimate of the system's impulse response ir. This is also graphed along with 99% confidence levels. The output argument ir is this impulse response estimate, so that its first entry corresponds to lag zero. (Negative lags are excluded in ir.) In the plot, the impulse response is scaled so that it corresponds to an impulse of height $1 / T$ and duration T, where T is the sampling interval of the data.

Input Arguments

data

Input-output data.

Specify data as an iddata object containing time-domain data only.
data should contain data for a single-input, single-output experiment. For the multivariate case, apply cra to two signals at a time, or use impulse.

M

Number of lags for which the covariance/correlation functions are computed.
M specifies the number of lags for which the covariance/correlation functions are computed. These are from -M to M , so that the length of R is $2 M+1$. The impulse response is computed from 0 to M .

Default: 20
na
Order of the AR model to which the input is fitted.
For the prewhitening, the input is fitted to an AR model of order na.
Use na $=0$ to obtain the covariance and correlation functions of the original data sequences.

Default: 10

plot

Plot display control.
Specify plot as one of the following integers:

- 0 - No plots are displayed.
- 1 - Plots the estimated impulse response with a 99% confidence region.
- 2 - Plots all the covariance functions.

Default: 1

Output Arguments

ir

Estimated impulse response.

The first entry of ir corresponds to lag zero. (Negative lags are excluded in ir.)

R

Covariance/correlation information.

- The first column of R contains the lag indices.
- The second column contains the covariance function of the (possibly filtered) output.
- The third column contains the covariance function of the (possibly prewhitened) input.
- The fourth column contains the correlation function. The plots can be redisplayed by cra(R).

cl

99% significance level for the impulse response.

Examples

Compare a second-order ARX model's impulse response with the one obtained by correlation analysis.

```
load iddata1
z=z1;
ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(20,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')
```


Alternatives

An often better alternative to cra is impulseest, which use a high-order FIR model to estimate the impulse response.

See Also
impulse | impulseest | spa | step

customnet

Custom nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

Syntax

C=customnet (H)
C=customnet (H,PropertyName, PropertyValue)

Description

customnet is an object that stores a custom nonlinear estimator with a user-defined unit function. This custom unit function uses a weighted sum of inputs to compute a scalar output.

Construction

C=customnet (H) creates a nonlinearity estimator object with a user-defined unit function using the function handle H . H must point to a function of the form [f,g,a] = function_name (x), where f is the value of the function, $g=d f / d x$, and a indicates the unit function active range. g is significantly nonzero in the interval [-a a]. Hammerstein-Wiener models require that your custom nonlinearity have only one input and one output.

C=customnet (H,PropertyName, PropertyValue) creates a nonlinearity estimator using property-value pairs defined in "customnet Properties" on page 1-171.

customnet Properties

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
%Get value of NumberOfUnits property
```


C. NumberOfUnits

You can also use the set function to set the value of particular properties. For example:
set(C, 'LinearTerm', 'on')
The first argument to set must be the name of a MATLAB variable.

Property Name	Description
NumberOfUnits	Integer specifies the number of nonlinearity units in the expansion. Default=10. For example: customnet (H, 'NumberOfUnits' , 5)
LinearTerm	Can have the following values: - ' on ' -Estimates the vector L in the expansion. - 'off'-Fixes the vector L to zero. For example: customnet(H, 'LinearTerm', 'on')
Parameters	A structure containing the parameters in the nonlinear expansion, as follows: - RegressorMean: 1-by-m vector containing the means of x in estimation data, r. - NonLinearSubspace: m-by-q matrix containing Q. - LinearSubspace: m-by-p matrix containing P. - LinearCoef: p-by-1 vector L. - Dilation: q-by-1 matrix containing the values b_{n}. - Translation: 1-by-n vector containing the values c_{n}. - OutputCoef: n -by- 1 vector containing the values a_{n}. - OutputOffset: scalar d. Typically, the values of this structure are set by estimating a model with a customnet nonlinearity.
UnitFen	Stores the function handle that points to the unit function.

Examples

Define custom unit function and save it in gaussunit.m:

```
function [f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])
% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.
% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
    g = - 2*x.*f;
    a = 0.2;
end
```

Use custom networks in nlarx and nlhw model estimation commands:

```
% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));
```


More About

Tips

Use customnet to define a nonlinear function $y=F(x)$, where y is scalar and x is an m dimensional row vector. The unit function is based on the following function expansion with a possible linear term L :

$$
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}+c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}+c_{n}\right)+d
\end{aligned}
$$

where f is a unit function that you define using the function handle H.
P and Q are m -by-p and m -by-q projection matrices, respectively. The projection matrices P and Q are determined by principal component analysis of estimation data. Usually, $\mathrm{p}=\mathrm{m}$. If the components of x in the estimation data are linearly dependent, then $\mathrm{p}<\mathrm{m}$. The number of columns of Q, q, corresponds to the number of components of x used in the unit function.

When used to estimate nonlinear ARX models, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used to estimate Hammerstein-Wiener models, $\mathrm{m}=\mathrm{q}=1$ and Q is a scalar.
r is a $1-b y-\mathrm{m}$ vector and represents the mean value of the regressor vector computed from estimation data.
d, a, and c are scalars.
L is a p-by-1 vector.
b represents $q-b y-1$ vectors.
The function handle of the unit function of the custom net must have the form [f, g, a] $=$ function_name (x). This function must be vectorized, which means that for a vector or matrix x, the output arguments f and g must have the same size as x and be computed element-by-element.

Algorithms

customnet uses an iterative search technique for estimating parameters.

- "Identifying Nonlinear ARX Models"
- "Identifying Hammerstein-Wiener Models"

See Also

evaluate | nlarx | nlhw

customreg

Custom regressor for nonlinear ARX models

Syntax

C=customreg (Function, Variables)
C=customreg(Function, Variables, Delays, Vectorized)

Description

customreg class represents arbitrary functions of past inputs and outputs, such as products, powers, and other MATLAB expressions of input and output variables.

You can specify custom regressors in addition to or instead of standard regressors for greater flexibility in modeling your data using nonlinear ARX models. For example, you can define regressors like $\tan (u(t-1)), u(t-1)^{2}$, and $u(t-1)^{*} y(t-3)$.

For simpler regressor expressions, specify custom regressors directly in the app or in the nlarx estimation command. For more complex expressions, create a customreg object for each custom regressor and specify these objects as inputs to the estimation. Regardless of how you specify custom regressors, the toolbox represents these regressors as customreg objects. Use getreg to list the expressions of all standard and custom regressors in your model.

A special case of custom regressors involves polynomial combinations of past inputs and outputs. For example, it is common to capture nonlinearities in the system using polynomial expressions like $y(t-1) 2, u(t-1) 2, y(t-2) 2, \mathrm{y}(t-1)^{*} y(t-2), y(t-1)^{*} u(t-1), y(t-$ $2)^{*} u(t-1)$. At the command line, use the polyreg command to generate polynomial-type regressors automatically by computing all combinations of input and output variables up to a specified degree. polyreg produces customreg objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors as the CustomRegressors property. You can list all custom regressors using m.CustomRegressors, where m is a nonlinear ARX model. For MIMO models, to retrieve the rth custom regressor for output ky, use m.CustomRegressors $\{k y\}(r)$.

Use the Vectorized property to specify whether to compute custom regressors using vectorized form during estimation. If you know that your regressor formulas can be vectorized, set Vectorized to 1 to achieve better performance. To better understand vectorization, consider the custom regressor function handle $z=a(x, y) x^{\wedge} 2^{*} y . x$ and y are vectors and each variable is evaluated over a time grid. Therefore, z must be evaluated for each (xi,yi) pair, and the results are concatenated to produce a z vector:

```
for k = 1:length(x)
    z(k) = x(k)^2*y(k)
end
```

The above expression is a nonvectorized computation and tends to be slow. Specifying a Vectorized computation uses MATLAB vectorization rules to evaluate the regressor expression using matrices instead of the FOR-loop and results in faster computation:

```
% ".*" indicates element-wise operation
z=(x.^2).*y
```


Construction

C=customreg(Function, Variables) specifies a custom regressor for a nonlinear ARX model. C is a customreg object that stores custom regressor. Function is a handle or string representing a function of input and output variables. Variables is a cell array of strings that represent the names of model inputs and outputs in the function Function. Each input and output name must coincide with the strings in the InputName and OutputName properties of the corresponding idnlarx object. The size of Variables must match the number of Function inputs. For multiple-output models with p outputs, the custom regressor is a p-by- 1 cell array or an array of customreg object, where the kyth entry defines the custom regressor for output ky. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.

C=customreg(Function, Variables, Delays, Vectorized) create a custom regressor that includes the delays corresponding to inputs or outputs in Arguments. Delays is a vector of positive integers that represent the delays of Variables variables (default is 1 for each vector element). The size of Delays must match the size of Variables. Vectorized value of 1 uses MATLAB vectorization rules to evaluate the regressor expression Function. By default, Vectorized value is 0 (false).

Properties

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
% Get value of Arguments property
C.Arguments
```

You can also use the set function to set the value of particular properties. For example:
set(C,'Vectorized',1)

Property Name	Description
Function	Function handle or string representing a function of standards regressors. For example: $c r=@(x, y) x * y$
Variables	Cell array of strings that represent the names of model input and output variables in the function Function. Each input and output name must coincide with the strings in the InputName and OutputName properties of the idnlarx object-the model for which you define custom regressors. The size of Variables must match the number of Function inputs. For example, Variables correspond to \{'y1' , 'u1'\} in: $\text { C = customreg(cr,\{'y1', 'u1'\},[2 3]) }$
Delays	Vector of positive integers representing the delays of Variables. The size of Delays must match the size of Arguments. Default: 1 for each vector element. For example, Delays are [2 3] in: C = customreg(cr,\{'y1', 'u1'\},[2 3])
Vectorized	Assignable values:

Property Name	Description
	$-\quad$ (default)—Function is not computed in vectorized form. - 1—Function is computed in vectorized form when called with vector arguments.

Examples

Define custom regressors as a cell array of strings:

```
load iddata1
m = nlarx(z1,[2 2 1]);
C={'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};
%u1 and y1 are system input and output
m.CustomRegressors = C;
m=pem(z1,m)
```

Define custom regressors directly in the estimation command nlarx:

```
m = nlarx(data,[na nb nk],'linear',...
    'CustomRegressors',...
    {'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});
```

Define custom regressors as an object array of customreg objects:

```
cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u' 'y'},[1 3]),...
    customreg(cr2,{'u'},2)];
m=addreg(m,C);
```

Use vectorization rules to evaluate regressor expression during estimation:

```
C = customreg(@(x,y) x*sin(y),{'u' 'y'},[1 3])
set(C,'Vectorized',1)
m = nlarx(data,[na nb nk],'sigmoidnet','CustomReg',C)
```


More About

- "Identifying Nonlinear ARX Models"
See Also
addreg | getreg | idnlarx | nlarx | polyreg

d2c

Convert model from discrete to continuous time

Syntax

```
sysc = d2c(sysd)
sysc = d2c(sysd,method)
sysc = d2c(sysd,opts)
[sysc,G] = d2c(sysd,method,opts)
```


Description

sysc $=\mathrm{d} 2 \mathrm{c}($ sysd) produces a continuous-time model sysc that is equivalent to the discrete-time "dynamic system model" sysd using zero-order hold on the inputs.
sysc $=$ d2c(sysd,method) uses the specified conversion method method.
sysc = d2c(sysd,opts) converts sysd using the option set opts, specified using the d2cOptions command.
[sysc, G] = d2c(sysd,method,opts) returns a matrix G that maps the states $x d[k]$ of the state-space model sysd to the states $x c(t)$ of sysc.

Input Arguments

sysd
Discrete-time "dynamic system model"
You cannot directly use an idgrey model with FcnType='d' with d2c. Convert the model into idss form first.

Default:

method

String specifying a discrete-to-continuous time conversion method:

- 'zoh ' - Zero-order hold on the inputs. Assumes the control inputs are piecewise constant over the sampling period.
- 'foh ' — Linear interpolation of the inputs (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period.
- 'tustin' - Bilinear (Tustin) approximation to the derivative.
- 'matched ' — Zero-pole matching method of [1] (for SISO systems only).

Default: 'zoh'

opts

Discrete-to-continuous time conversion options, created using d2cOptions.

Output Arguments

sysc

Continuous-time model of the same type as the input system sysd.
When sysd is an identified (IDLTI) model, sysc:

- Includes both the measured and noise components of sysd. If the noise variance is λ in sysd, then the continuous-time model sysc has an indicated level of noise spectral density equal to $T s^{*} \lambda$.
- Does not include the estimated parameter covariance of sysd. If you want to translate the covariance while converting the model, use translatecov.

G

Matrix mapping the states $x d[k]$ of the state-space model sysd to the states $x c(t)$ of sysc:

$$
x_{c}\left(k T_{s}\right)=G\left[\begin{array}{c}
x_{d}[k] \\
u[k]
\end{array}\right] .
$$

Given an initial condition x 0 for sysd and an initial input $\mathrm{u} 0=\mathrm{u}[0]$, the corresponding initial condition for sysc (assuming $u[k]=0$ for $k<0$ is given by:

$$
x_{c}(0)=G\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right] .
$$

Examples

Example 1

Consider the following discrete-time transfer function:

$$
H(z)=\frac{z-1}{z^{2}+z+0.3}
$$

Suppose the model has sample time $T_{s}=0.1 \mathrm{~s}$. You can derive a continuous-time zero-order-hold equivalent model with the following commands:

```
H = tf([1 -1], [1 1 0.3], 0.1);
Hc = d2c(H)
Hc =
    121.7 s + 3.026e-12
    s^2 + 12.04 s + 776.7
Continuous-time transfer function.
```

Discretizing the resulting model Hc with the default zero-order hold method and sampling time $T_{s}=0.1 \mathrm{~s}$ returns the original discrete model $H(z)$:

```
c2d(Hc,0.1)
ans =
    z - 1
    z^2 + z + 0.3
Sample time: 0.1 seconds
Discrete-time transfer function.
```

To use the Tustin approximation instead of zero-order hold, type
Hc = d2c (H,'tustin');
As with zero-order hold, the inverse discretization operation

```
c2d(Hc,0.1,'tustin');
```

gives back the original $H(z)$.

Example 2

Convert an identified transfer function and compare its performance against a directly estimated continuous-time model.

```
load iddata1
sys1d = tfest(z1,2,'Ts',0.1);
sys1c = d2c(sys1d,'zoh');
sys2c = tfest(z1,2);
compare(z1,sys1c,sys2c)
```

The two systems are virtually identical.

Example 3

Analyze the effect of parameter uncertainty on frequency response across d2c operation on an identified model.

```
load iddata1
sysd = tfest(z1, 2, 'Ts', 0.1);
sysc = d2c(sysd, 'zoh');
```

sys1c has no covariance information. Regenerate it using a zero iteration update with the same estimation command and estimation data:

```
opt = tfestOptions;
opt.SearchOption.MaxIter = 0;
sys1c = tfest(z1, sysc, opt);
h = bodeplot(sysd, sysc);
showConfidence(h)
```

The uncertainties of sysc and sysd are comparable up to the Nyquist frequency. However, sysc exhibits large uncertainty in the frequency range for which the estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov which is a Gaussapproximation formula based translation of covariance across model type conversion operations.

Limitations

The Tustin approximation is not defined for systems with poles at $z=-1$ and is illconditioned for systems with poles near $z=-1$.

The zero-order hold method cannot handle systems with poles at $z=0$. In addition, the 'zoh ' conversion increases the model order for systems with negative real poles, [2]. The model order increases because the matrix logarithm maps real negative poles to complex poles. Single complex poles are not physically meaningful because of their complex time response.

Instead, to ensure that all complex poles of the continuous model come in conjugate pairs, d 2 c replaces negative real poles $z=-\alpha$ with a pair of complex conjugate poles near $-\alpha$.

The conversion then yields a continuous model with higher order. For example, to convert the discrete-time transfer function

$$
H(z)=\frac{z+0.2}{(z+0.5)\left(z^{2}+z+0.4\right)}
$$

type:

```
Ts \(=0.1 \%\) sample time 0.1 s
\(H=z p k(-0.2,-0.5,1, T s) * t f\left(1,\left[\begin{array}{ll}1 & 1 \\ 0.4\end{array}\right], T s\right)\)
\(H c=d 2 c(H)\)
```

These commands produce the following result.

```
Warning: System order was increased to handle real negative poles.
Zero/pole/gain:
    -33.6556 (s-6.273) (s^2 + 28.29s + 1041)
(s^2 + 9.163s + 637.3) ( s^2 + 13.86s + 1035)
```

To convert Hc back to discrete time, type:

```
c2d(Hc,Ts)
```

yielding

```
Zero/pole/gain:
    (z+0.5) (z+0.2)
(z+0.5)^2 (z^2 + z + 0.4)
```

Sampling time: 0.1
This discrete model coincides with $H(z)$ after canceling the pole/zero pair at $z=-0.5$.

More About

Tips

- Use the syntax sysc = d2c(sysd,'method') to convert sysd using the default options for 'method'. To specify tustin conversion with a frequency prewarp (formerly the 'prewarp' method), use the syntax sysc = d2c(sysd,opts). See the d2cOptions reference page for more information.

Algorithms

d2c performs the 'zoh' conversion in state space, and relies on the matrix logarithm (see logm in the MATLAB documentation).

See "Continuous-Discrete Conversion Methods" for more details on the conversion methods.

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997..
[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain and s-domain Models in System Identification," Proceedings of the IEEE ${ }^{\circledR}$ Instrumentation and Measurement Technology Conference, Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.

See Also

d2cOptions | c2d | d2d | translatecov | logm

d2cOptions

Create option set for discrete- to continuous-time conversions

Syntax

```
opts = d2cOptions
opts = d2cOptions(Name,Value)
```


Description

opts $=$ d2cOptions returns the default options for d2c.
opts = d2cOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

'method'

Discretization method, specified as one of the following values:

'zoh '	Zero-order hold, where d2c assumes the control inputs are piecewise constant over the sampling period Ts.
'foh '	Linear interpolation of the inputs (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period.
'tustin'	Bilinear (Tustin) approximation. By default, d2c converts with no prewarp. To include prewarp, use the PrewarpFrequency option. Zero-pole matching method. (See [1], p. 224.)
'matched '	Default: 'zoh'

'PrewarpFrequency'

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discrete-time system.
Specify the prewarp frequency as a positive scalar value. A value of 0 corresponds to the 'tustin' method without prewarp.

Default: 0
For additional information about conversion methods, see "Continuous-Discrete Conversion Methods".

Examples

Convert a discrete-time model to continuous-time using the 'tustin' method with frequency prewarping.

Create the discrete-time transfer function

$$
\frac{z+1}{z^{2}+z+1}
$$

```
hd = tf([1 1], [1 1 1 1], 0.1); % 0.1s sampling time
``` To convert to continuous-time, use d2cOptions to create the option set.
```

opts = d2cOptions('Method', 'tustin', 'PrewarpFrequency', 20);
hc = d2c(hd, opts);

```

You can use opts to resample additional models using the same options.

\section*{References}
[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

\author{
See Also \\ d2c
}

\section*{d2d}

Resample discrete-time model

\section*{Syntax}
```

sys1 = d2d(sys, Ts)
sys1 = d2d(sys, Ts, 'method')
sys1 = d2d(sys, Ts, opts)

```

\section*{Description}
sys1 \(=\mathrm{d} 2 \mathrm{~d}(\) sys, Ts) resamples the discrete-time dynamic system model sys to produce an equivalent discrete-time model sys1 with the new sample time Ts (in seconds), using zero-order hold on the inputs.
sys1 = d2d(sys, Ts, 'method') uses the specified resampling method 'method ':
- 'zoh' - Zero-order hold on the inputs
- 'tustin' - Bilinear (Tustin) approximation
sys1 = d2d(sys, Ts, opts) resamples sys using the option set with d2dOptions.

\section*{Examples}

\section*{Example 1}

Consider the zero-pole-gain model
\[
H(z)=\frac{z-0.7}{z-0.5}
\]
with sample time 0.1 s . You can resample this model at 0.05 s by typing
\[
H=\operatorname{zpk}(0.7,0.5,1,0.1)
\]
```

H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)
---------
(z-0.7071)
Sampling time: 0.05

```

The inverse resampling operation, performed by typing d2d (\(\mathrm{H} 2,0.1\)), yields back the initial model \(H(z)\).
```

Zero/pole/gain:

```
(z-0.7)

(z-0.5)
Sampling time: 0.1

\section*{Example 2}

Suppose you estimates a discrete-time model of a sample time commensurate with the estimation data (\(\mathrm{Ts}=0.1\) seconds). However, your deployment application demands a faster sampling frequency (\(\mathrm{Ts}=0.01\) seconds).
```

load iddata1

```
sys = oe(z1, [2 2 1]);
sysFast = d2d(sys, 0.01, 'zoh')
bode(sys, sysFast)

\section*{More About}

\section*{Tips}
- Use the syntax sys1 = d2d(sys, Ts, 'method') to resample sys using the default options for 'method'. To specify tustin resampling with a frequency prewarp (formerly the 'prewarp' method), use the syntax sys1 = d2d(sys, Ts, opts). See the d2dOptions reference page.
- When sys is an identified (IDLTI) model, sys1 does not include the estimated parameter covariance of sys. If you want to translate the covariance while converting the model, use translatecov.

\section*{See Also \\ d2dOptions | c2d | d2c | upsample | translatecov}

\section*{d2dOptions}

Create option set for discrete-time resampling

\section*{Syntax}
opts = d2dOptions
opts = d2dOptions('OptionName', OptionValue)

\section*{Description}
opts = d2dOptions returns the default options for d2d.
opts = d2dOptions('OptionName', OptionValue) accepts one or more commaseparated name/value pairs that specify options for the d2d command. Specify OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

\section*{'Method'}

Discretization method, specified as one of the following values:
\begin{tabular}{ll}
'zoh' & \begin{tabular}{l}
Zero-order hold, where d2d assumes the control inputs are piecewise \\
constant over the sampling period Ts.
\end{tabular} \\
'tustin' & \begin{tabular}{l}
Bilinear (Tustin) approximation. By default, d2d resamples with no \\
prewarp. To include prewarp, use the PrewarpFrequency option.
\end{tabular}
\end{tabular}

Default: 'zoh'

\section*{'PrewarpFrequency'}

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the resampled system. Takes positive scalar values. The prewarp frequency must be smaller than the Nyquist frequency before and after resampling. A value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

\section*{Examples}

Resample a discrete-time model using the 'tustin ' method with frequency prewarping.
Create the discrete-time transfer function
\[
\frac{z+1}{z^{2}+z+1}
\]
```

h1 = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

```

To resample to a different sampling time, use d2dOptions to create the option set.
```

opts = d2dOptions('Method', 'tustin', 'PrewarpFrequency', 20);
h2 = d2d(h1, 0.05, opts);

```

You can use opts to resample additional models using the same options.

\section*{See Also d2d}

\section*{damp}

Natural frequency and damping ratio

\section*{Syntax}
damp(sys)
[Wn,zeta] = damp(sys)
[Wn,zeta, P] = damp(sys)

\section*{Description}
damp (sys) displays a table of the damping ratio (also called damping factor), natural frequency, and time constant of the poles of the linear model sys. For a discrete-time model, the table also includes the magnitude of each pole. Frequencies are expressed in units of the reciprocal of the TimeUnit property of sys. Time constants are expressed in the same units as the TimeUnit property of sys.

This command requires a Control System Toolbox license.
[Wn, zeta] = damp(sys) returns the natural frequencies, Wn, and damping ratios,zeta, of the poles of sys.
[Wn,zeta, P] = damp(sys) returns the poles of sys.

\section*{Input Arguments}

\section*{sys}

Any linear dynamic system model.

\section*{Output Arguments}

\section*{Wn}

Vector containing the natural frequencies of each pole of sys, in order of increasing frequency. Frequencies are expressed in units of the reciprocal of the TimeUnit property of sys.

If sys is a discrete-time model with specified sampling time, Wn contains the natural frequencies of the equivalent continuous-time poles (see "Algorithms" on page 1-197). If sys has an unspecified sampling time (\(\mathrm{Ts}=-1\)), then the software uses \(\mathrm{Ts}=1\) and calculates Wn accordingly.

\section*{zeta}

Vector containing the damping ratios of each pole of sys, in the same order as Wn.
If sys is a discrete-time model with specified sampling time, zeta contains the damping ratios of the equivalent continuous-time poles (see "Algorithms" on page 1-197). If sys has an unspecified sampling time (\(\mathrm{Ts}=-1\)), then the software uses \(\mathrm{Ts}=1\) and calculates zeta accordingly.

\section*{P}

Vector containing the poles of sys, in order of increasing natural frequency. \(P\) is the same as the output of pole(sys), except for the order.

\section*{Examples}

\section*{Natural Frequency, Damping Ratio, and Poles of Continuous-Time System}

Calculate the natural frequency, damping ratio, time constant, and poles of the continuous-time transfer function:
\[
\begin{gathered}
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} . \\
H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ;
\end{gathered}
\]

Display the natural frequencies, damping ratios, time constants, and poles of \(H\). \(\operatorname{damp}(\mathrm{H})\)
\begin{tabular}{cccc}
Pole & Damping & \begin{tabular}{c}
Frequency \\
(rad/seconds)
\end{tabular} & \begin{tabular}{c}
Time Constant \\
(seconds)
\end{tabular} \\
\(-1.00 \mathrm{e}+00+1.41 \mathrm{e}+00 \mathrm{i}\) & \(5.77 \mathrm{e}-01\) & \(1.73 \mathrm{e}+00\) & \(1.00 \mathrm{e}+00\) \\
\(-1.00 \mathrm{e}+00-1.41 \mathrm{e}+00 \mathrm{i}\) & \(5.77 \mathrm{e}-01\) & \(1.73 \mathrm{e}+00\) & \(1.00 \mathrm{e}+00\)
\end{tabular}

Obtain vectors containing the natural frequencies and damping ratios of the poles.
[Wn, zeta] = damp (H);
Calculate the associated time constants.
```

tau = 1./(zeta.*Wn);

```

\section*{Natural Frequency, Damping Ratio, and Poles of Discrete-Time System}

Calculate the natural frequency, damping ratio, time constant, and poles of a discretetime transfer function.
```

H = tf([5 3 1],[$$
\begin{array}{llll}{6}&{6}&{4}\end{array}
$$],0.01);

```

Display information about the poles of \(H\).
```

damp(H)

```
\begin{tabular}{ccccr}
Pole & Magnitude & Damping & \begin{tabular}{c}
Frequency \\
(rad/seconds)
\end{tabular} & \begin{tabular}{c}
Time Constant \\
(seconds)
\end{tabular} \\
\(-3.02 \mathrm{e}-01+8.06 \mathrm{e}-01 \mathrm{i}\) & \(8.61 \mathrm{e}-01\) & \(7.74 \mathrm{e}-02\) & \(1.93 \mathrm{e}+02\) & \(6.68 \mathrm{e}-02\) \\
\(-3.02 \mathrm{e}-01-8.06 \mathrm{e}-01 \mathrm{i}\) & \(8.61 \mathrm{e}-01\) & \(7.74 \mathrm{e}-02\) & \(1.93 \mathrm{e}+02\) & \(6.68 \mathrm{e}-02\) \\
\(-5.40 \mathrm{e}+00\) & \(5.40 \mathrm{e}+00\) & \(-4.73 \mathrm{e}-01\) & \(3.57 \mathrm{e}+02\) & \(-5.93 \mathrm{e}-03\)
\end{tabular}

The Magnitude column displays the discrete-time pole magnitudes. The Damping, Frequency, and Time Constant columns display values calculated using the equivalent continuous-time poles.

Obtain vectors containing the natural frequencies and damping ratios of the poles.
[Wn,zeta] = damp (H) ;
Calculate the associated time constants.
```

tau = 1./(zeta.*Wn);

```

\section*{More About}

\section*{Algorithms}

The natural frequency, time constant, and damping ratio of the system poles are defined in the following table:
\begin{tabular}{|l|l|l|}
\hline & Continuous Time & \begin{tabular}{l}
Discrete Time with Sample Time \\
Ts
\end{tabular} \\
\hline Pole Location & \(s\) & \(z\) \\
\hline \begin{tabular}{l}
Equivalent Continuous- \\
Time Pole
\end{tabular} & Not applicable & \(s=\frac{\ln (z)}{T_{s}}\) \\
\hline Natural Frequency & \(\omega_{n}=|s|\) & \(\omega_{n}=|s|=\left|\frac{\ln (z)}{T_{s}}\right|\) \\
\hline Damping Ratio & \(\zeta=-\cos (\angle s)\) & \(\zeta=-\cos (\angle s)=-\cos (\angle l \eta(z))\) \\
\hline Time Constant & \(\tau=\frac{1}{\omega_{n} \zeta}\) & \(\tau=\frac{1}{\omega_{n} \zeta}\) \\
\hline
\end{tabular}

\section*{See Also}
eig | esort | dsort | pole | pzmap | zero

\section*{data2state(idnlarx)}

Map past input/output data to current states of nonlinear ARX model

\section*{Syntax}
```

X = data2state(MODEL,IOSTRUCT)

```

X = data2state(MODEL, DATA)

\section*{Description}

X = data2state(MODEL, IOSTRUCT) maps the input and output samples in IOSTRUCT to the current states of MODEL, X. For a definition of the states of idnlarx models, see "Definition of idnlarx States" on page 1-415. The data in IOSTRUCT is interpreted as past samples of data, so that the returned state values must be interpreted as values at the time immediately after the time corresponding to the last (most recent) sample in the data.
\(X=\) data2state (MODEL, DATA) maps the input and output samples from DATA to the current states, \(X\), of the model.

\section*{Input Arguments}
- MODEL: idnlarx model.
- IOSTRUCT: Structure with fields Input and Output. Samples in IOSTRUCT must be in the order of increasing time (the last row of values corresponds to the most recent time). Each field contains data samples corresponding to the past input and output of MODEL respectively.
- Input: Matrix of NU columns, where NU is the number of inputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all input variables).
- 1 to specify steady-state (constant) input values.
- Output: Matrix of NY columns, where NY is the number of outputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all output variables).
- 1 to specify steady-state (constant) output values.
- DATA: iddata object containing data samples. Samples in DATA must be in the order of increasing time (the last row of values corresponds to the most recent time). The number of samples in DATA must be greater than or equal to the maximum delay in the model across all input and output variables.

Note: To determine maximum delay in each input and output channel of MODEL, use the getDelayInfo command. For more information, see the getDelayInfo reference page.

\section*{Output Arguments}

X is the state vector of MODEL corresponding to the time after the most recent sample in the input data (IOSTRUCT or DATA).

\section*{Examples}

In this example you determine the current state of an idnlarx model.
1 Load your data and create a data object.
```

load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera', ...
'TimeUnit','s');

```

2 Estimate an idnlarx model from the data. The model has 6 inputs and 2 outputs. mw1 = nlarx (z, [ones (2,2) , ones (2,6), ones \((2,6)]\), wavenet \()\);
3 Compute the maximum delays across all output variables in mw1.
MaxDelays = getDelayInfo(mw1);
4 Represent the past input and output samples:
```

IOData = struct('Input', ...
rand(max(MaxDelays(3+1:end)),6),...
'Output', ...

```
```

rand(max(MaxDelays(1:3)),2));

```

5 Compute the current states of mw1 based on the past data in IOSTRUCT.
X = data2state(mw1,IOData)
The previous command computes the state vector.

Note: You can specify constant input levels with scalar values (10, 20, 30, 40,50,60) for the input variables by setting IOSTRUCT. Input \(=[10,20,30,40,50,60]\) instead of a matrix of values.

\section*{See Also}
findop(idnlarx) | findstates(idnlarx) | getDelayInfo

\section*{db2mag}

Convert decibels (dB) to magnitude

\section*{Syntax}
\(y=d b 2 m a g(y d b)\)

\section*{Description}
\(y=d b 2 m a g(y d b)\) returns the corresponding magnitude \(y\) for a given decibel (dB)
value \(y d b\). The relationship between magnitude and decibels is \(y d b=20 * \log _{10}(y)\).

\author{
See Also mag2db
}

\section*{dcgain}

Low-frequency (DC) gain of LTI system

\section*{Syntax}
\(\mathrm{k}=\) dcgain(sys)

\section*{Description}
\(\mathrm{k}=\) dcgain(sys) computes the DC gain k of the LTI model sys.

\section*{Continuous Time}

The continuous-time DC gain is the transfer function value at the frequency \(s=0\). For state-space models with matrices \((A, B, C, D)\), this value is
\(K=D-C A^{-1} B\)

\section*{Discrete Time}

The discrete-time DC gain is the transfer function value at \(z=1\). For state-space models with matrices \((A, B, C, D)\), this value is \(K=D+C(I-A)^{-1} B\)

\section*{Examples}

\section*{Example 1}

To compute the DC gain of the MIMO transfer function
\[
H(s)=\left[\begin{array}{cc}
1 & \frac{s-1}{s^{2}+s+3} \\
\frac{1}{s+1} & \frac{s+2}{s-3}
\end{array}\right]
\]

\section*{type}
```

H = [1 tf([1 -1],[11 1 3]) ; tf(1,[1 1]) tf([[1 2],[1 -3])];
dcgain(H)

```
to get the result:
ans \(=\)
\(\begin{array}{ll}1.0000 & -0.3333 \\ 1.0000 & -0.6667\end{array}\)

\section*{Example 2}

To compute the DC gain of an identified process model, type;
load iddata1
sys = idproc('p1d');
syse = procest(z1, sys)
dcgain(syse)
The DC gain is stored same as syse. Kp.

\section*{More About}

\section*{Tips}

The DC gain is infinite for systems with integrators.

\author{
See Also \\ evalfr | norm
}

\section*{deadzone}

Class representing dead-zone nonlinearity estimator for Hammerstein-Wiener models

\section*{Syntax}
```

s=deadzone(ZeroInterval,I)

```

\section*{Description}
deadzone is an object that stores the dead-zone nonlinearity estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=deadzone(ZeroInterval, I) creates a dead-zone nonlinearity estimator object, initialized with the zero interval I.

Use evaluate \((d, x)\) to compute the value of the function defined by the deadzone object d at x.

\section*{Properties}

You can specify the property value as an argument in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
\% List ZeroInterval property value
get(d)
d.ZeroInterval

You can also use the set function to set the value of particular properties. For example:
set(d, 'ZeroInterval', [-1.5 1.5])
The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|l|l|}
\hline Property Name & Description \\
\hline ZeroInterval & \begin{tabular}{l}
1-by-2 row vector that specifies the initial zero interval of the \\
nonlinearity. \\
Default=[NaN NaN]. \\
For example: \\
deadzone ('ZeroInterval' , [-1.5 1.5])
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Use deadzone to specify the dead-zone nonlinearity estimator in Hammerstein-Wiener models. For example:
```

m=nlhw(Data,Orders,deadzone([-1 1]),[]);

```

The dead-zone nonlinearity is initialized at the interval [-1 1 1]. The interval values are adjusted to the estimation data by nlhw.

\section*{More About}

\section*{Tips}

Use deadzone to define a nonlinear function \(y=F(x)\), where \(F\) is a function of \(x\) and has the following characteristics:
\[
\begin{array}{ll}
a \leq x<b & F(x)=0 \\
x<a & F(x)=x-a \\
x \geq b & F(x)=x-b
\end{array}
\]
\(y\) and \(x\) are scalars.

\section*{See Also}
nlhw

\section*{delayest}

Estimate time delay (dead time) from data

\section*{Syntax}
```

nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

```

\section*{Description}
\(n k=\) delayest (Data) estimates time delay from data. Data is an iddata object containing the input-output data. It can also be an idfrd object defining frequencyresponse data. Only single-output data can be handled. nk is returned as an integer or a row vector of integers, containing the estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different delays:
\[
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
\]
nk = delayest(Data, na, nb, nkmin, nkmax, maxtest) specifies additional options. The integer na is the order of the A polynomial (default 2). nb is a row vector of length equal to the number of inputs, containing the order(s) of the B polynomial(s) (default all 2). nkmin and nkmax are row vectors of the same length as the number of inputs, containing the smallest and largest delays to be tested. Defaults are nkmin \(=0\) and nkmax \(=\) nkmin+20. If nb, nkmax, and/or nkmin are entered as scalars in the multipleinput case, all inputs will be assigned the same values. maxtest is the largest number of tests allowed (default 10,000).

\section*{detrend}

Subtract offset or trend from data signals

\section*{Syntax}
```

data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_\overline{d}= detrend(data,1,brkp)

```

\section*{Description}
data_d = detrend(data) subtracts the mean value from each time-domain or timeseries signal data. data_d and data are iddata objects.
data_d = detrend(data, Type) subtracts a mean value from each signal when Type \(=0\), a linear trend (least-squares fit) when Type \(=1\), or a trend specified by a TrendInfo object when Type \(=\mathrm{T}\).
[data_d, T] = detrend(data, Type) stores the trend information as a TrendInfo object \(\overline{\mathrm{T}}\).
data_d = detrend (data, 1, brkp) subtracts a piecewise linear trend at one or more breakpoints brkp. brkp is a data index where discontinuities between successive linear trends occur. When brkp contains breakpoints that match the time vector, detrend subtracts a continuous piecewise linear trend. You cannot store piecewise linear trend information as an output argument.

\section*{Examples}

\section*{Substract Mean Values From Signals}

Subtract mean values from input and output signals and store the trend information.
```

load dryer2

```
```

data = iddata(y2,u2,0.08);
plot(data);
[data_d,T] = detrend(data,0);
hold on
plot(data_d)

```

\section*{Input-Output Data}

\section*{Remove Offsets From Signals}

Remove specified offset from input and output signals:
```

% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)

```
```

plot(data)
% Create a TrendInfo object for storing offsets and trends.
T = getTrend(data)
% Assign offset values to the TrendInfo object.
T.InputOffset=5;
T.OutputOffset=5;
% Subtract offset from the data.
data_d = detrend(data,T)
% Plot detrended data on the same plot.
hold on
plot(data_d)

```

\section*{Substract Several Linear Trends}

Subtract several linear trends that connect at three breakpoints [30 60 90]:
```

data = detrend(data,1,[30 60 90]);
% [30 60 90] are data indexes where breakpoints occur.

```

\section*{Substract Mean Value and a V-shaped Trend}

Subtract a mean value from the input signal and a V-shaped trend from the output signal, such that the V peak occurs at the breakpoint value of 119:
```

zd1 = z(:,:,[]); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];

```

\section*{More About}
- "Handling Offsets and Trends in Data"

\section*{See Also}
| TrendInfo | getTrend

\section*{diff}

Difference signals in iddata objects

\section*{Syntax}
```

zdi = diff(z)
zdi = diff(z,n)

```

\section*{Description}
\(z d i=\operatorname{diff}(z)\)
zdi \(=\operatorname{diff}(z, n)\)
\(z\) is a time-domain iddata object. \(\operatorname{diff}(z)\) and \(\operatorname{diff}(z, n)\) apply this command to each of the input/output signals in \(\mathbf{z}\).

\section*{effe}

Estimate empirical transfer functions and periodograms

\section*{Syntax}
```

g = etfe(data)
g = etfe(data,M)
g = etfe(data,M,N)

```

\section*{Description}
\(g=e t f e(d a t a)\) estimates a transfer function of the form:
\(y(t)=G(q) u(t)+v(t)\)
data contains time- or frequency-domain input-output data or time-series data:
- If data is time-domain input-output signals, \(g\) is the ratio of the output Fourier transform to the input Fourier transform for the data.

For nonperiodic data, the transfer function is estimated at 128 equally-spaced frequencies [1:128]/128*pi/Ts.

For periodic data that contains a whole number of periods (data.Period = integer), the response is computed at the frequencies \(k * 2 *\) pi/period for \(k=0\) up to the Nyquist frequency.
- If data is frequency-domain input-output signals, g is the ratio of output to input at all frequencies, where the input is nonzero.
- If data is time-series data (no input channels), \(g\) is the periodogram, that is the normed absolute square of the Fourier transform, of the data. The corresponding spectral estimate is normalized, as described in "Spectrum Normalization" and differs from the spectrum normalization in the Signal Processing Toolbox \({ }^{\mathrm{TM}}\) product.
\(g=\) etfe(data, \(M\)) applies a smoothing operation on the raw spectral estimates using a Hamming Window that yields a frequency resolution of about \(\mathrm{pi} / \mathrm{M}\). The effect of M
is similar to the effect of \(M\) in spa. \(M\) is ignored for periodic data. Use this syntax as an alternative to spa for narrowband spectra and systems that require large values of M .
\(g=\) etfe(data, \(M, N\)) specifies the frequency spacing for nonperiodic data.
- For nonperiodic time-domain data, \(N\) specifies the frequency grid [1:N]/N*pi/Ts rad/TimeUnit. When not specified, N is 128.
- For periodic time-domain data, N is ignored.
- For frequency-domain data, the \(N\) is fmin:delta_f:fmax, where [fmin fmax] is the range of frequencies in data, and delta_f is (fmax-fmin)/(N-1) rad/ TimeUnit. When not specified, the response is computed at the frequencies contained in data where input is nonzero.

\section*{Examples}

\section*{Compare an Empirical Transfer Function to a Smoothed Spectral Estimate}

Load estimation data.
```

load iddata1 z1;

```

Estimate empirical transfer function and smoothed spectral estimate.
```

ge = etfe(z1);
gs = spa(z1);

```

Compare the two models on a Bode plot.
```

bode(ge,gs)

```

\section*{Bode Diagram}

\section*{Generate Empirical Transfer Function Using Periodic Input}

Generate a periodic input, simulate a system with it, and compare the frequency response of the estimated model with the original system at the excited frequency points.

Generate a periodic input signal and output signal using simulation.
```

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);

```

Estimate an empirical transfer function.
```

me = etfe([y u]);

```

Compare the empirical transfer function with the original model.
bode(me,'b*',m,'r')

\section*{Bode Diagram}

\section*{Apply Smoothing Operation on Empirical Transfer Function Estimate}

Perform a smoothing operation on raw spectral estimates using a Hamming Window and compare the responses.

Load data.
load iddata1
Estimate empirical transfer functions with and without the smoothing operation.
```

ge1 = etfe(z1);
ge2 = etfe(z1,32);

```

Compare the models on a Bode plot.
ge2 is smoother than ge1 because of the effect of the smoothing operation.
```

bode(ge1,ge2)

```

\section*{Bode Diagram}

\section*{Compare Effect of Frequency Spacing on Empirical Transfer Function Estimate}

Estimate empirical transfer functions with low- and high-frequency spacings and compare the responses.

Load data.

\section*{load iddata9}

Estimate empirical transfer functions with low and high frequency spacings.
```

ge1=etfe(z9,[],32);
ge2=etfe(z9,[],512);

```

Plot the output power spectrum of the two models.
spectrum(ge1,'b.-',ge2,'g')

\section*{Power Spectrum}

- "Estimate Frequency-Response Models at the Command Line"

\section*{Input Arguments}

\section*{data - Estimation data \\ iddata}

Estimation data, specified as an iddata object. The data can be time- or frequencydomain input/output signals or time-series data.

\section*{M - Frequency resolution}
[] (default) | positive scalar
Frequency resolution, specified as a positive scalar.

\section*{N - Frequency spacing}

128 for nonperiodic time-domain data (default) | positive scalar
Frequency spacing, specified as a positive scalar. For frequency-domain data, the default frequency spacing is the spacing inherent in the estimation data.

\section*{Output Arguments}

\section*{g - Transfer function estimate}
idfrd
Transfer function estimate, returned as an idfrd model.

\section*{More About}
- "What Is a Frequency-Response Model?"

\author{
See Also \\ bode | freqresp | idfrd | impulseest | nyquist \| spa | spafdr | spectrum
}

\section*{evalfr}

Evaluate frequency response at given frequency

\section*{Syntax}
frsp = evalfr(sys,f)

\section*{Description}
frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK model sys at the complex number \(f\). For state-space models with data \((A, B, C, D)\), the result is \(H(f)=D+C(f I-A)^{-1} B\)
evalfr is a simplified version of freqresp meant for quick evaluation of the response at a single point. Use freqresp to compute the frequency response over a set of frequencies.

\section*{Examples}

\section*{Example 1}

To evaluate the discrete-time transfer function
\[
H(z)=\frac{z-1}{z^{2}+z+1}
\]
at \(z=1+j\), type
\(H=t f\left(\left[\begin{array}{ll}1 & -1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right],-1\right) ;\)
z = 1+j;
evalfr(H,z)
to get the result:
ans =

\section*{\(2.3077 e-01+1.5385 e-01 i\)}

\section*{Example 2}

To evaluate the frequency response of a continuous-time IDTF model at frequency \(\mathrm{w}=\) \(0.1 \mathrm{rad} / \mathrm{s}\), type:
```

sys = idtf(1,[1 2 1]);

```
\(\mathrm{w}=0.1\);
\(\mathrm{s}=1 \mathrm{j}^{*} \mathrm{w}\);
evalfr(sys, s)
The result is same as freqresp(sys, w).

\section*{Limitations}

The response is not finite when f is a pole of sys.

\author{
See Also bode | freqresp | sigma
}

\section*{evaluate}

Value of nonlinearity estimator at given input

\section*{Syntax}
```

value = evaluate(nl,x)

```

\section*{Arguments}
```

nl
Nonlinearity estimator object.
x

```

Value at which to evaluate the nonlinearity.
If nl is a single nonlinearity estimator, then x is a 1 -by- nx row vector or an \(n v\)-by- nx matrix, where \(n x\) is the dimension of the regression vector input to \(n l(\operatorname{size}(n l)\)) and nv is the number of points where nl is evaluated.

If nl is an array of ny nonlinearity estimators, then x is a 1-by-ny cell array of nv -by-nx matrices.

\section*{Description}
value = evaluate \((n l, x)\) computes the value of a nonlinear estimator object of type customnet, deadzone, linear, neuralnet, pwlinear, saturation, sigmoidnet, treepartition, or wavenet.

\section*{Examples}

The following syntax evaluates the nonlinearity of an estimated nonlinear ARX model m:
```

value = evaluate(m.Nonlinearity,x)

```
where m.Nonlinearity accesses the nonlinearity estimator of the nonlinear ARX model.

\section*{See Also}
idnlarx | idnlhw

\section*{fcat}

Concatenate FRD models along frequency dimension

\section*{Syntax}
sys = fcat(sys1,sys2,...)

\section*{Description}
sys \(=\) fcat (sys1, sys2, ...) takes two or more frd models and merges their frequency responses into a single frd model sys. The resulting frequency vector is sorted by increasing frequency. The frequency vectors of sys1, sys2, .. should not intersect. If the frequency vectors do intersect, use fdel to remove intersecting data from one or more of the models.

\section*{See Also}
idfrd | fdel | fselect | interp | frd

\section*{fdel}

Delete specified data from frequency response data (FRD) models

\section*{Syntax}
sysout \(=\) fdel(sys, freq)

\section*{Description}
sysout \(=\) fdel (sys, freq) removes from the frd model sys the data nearest to the frequency values specified in the vector freq.

\section*{Input Arguments}

\section*{sys}
frd model.
freq
Vector of frequency values.

\section*{Output Arguments}

\section*{sysout}
frd model containing the data remaining in sys after removing the frequency points closest to the entries of freq.

\section*{Examples}

Remove selected data from a frd model. In this example, first obtain an frd model:
```

sys = frd(tf([1],[1 1]), logspace(0,1,10))
Frequency(rad/s) Response
1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.4841i
1.6681 0.2644 - 0.4410i
2.1544 0.1773 - 0.3819i
2.7826 0.1144 - 0.3183i
3.5938 0.0719 - 0.2583i
4.6416 0.0444 - 0.2059i
5.9948 0.0271-0.1623i
7.7426 0.0164 - 0.1270i
10.0000 0.0099 - 0.0990i

```
Continuous-time frequency response.

The following commands remove the data nearest \(2,3.5\), and \(6 \mathrm{rad} / \mathrm{s}\) from sys.
```

freq = [2, 3.5, 6];
sysout = fdel(sys, freq)

Frequency (rad/s)	Response	
1.0000	0.5000	0.5000 i
1.2915	0.3748	0.4841 i
1.6681	0.2644	0.4410 i
2.7826	0.1144	- 0.3183i
4.6416	0.0444	0.20591
7.7426	0.0164	0.1270 i
10.0000	0.0099	- 0.0990i

```

Continuous-time frequency response.
You do not have to specify the exact frequency of the data to remove. fdel removes the data nearest to the specified frequencies.

\section*{More About}

\section*{Tips}
- Use fdel to remove unwanted data (for example, outlier points) at specified frequencies.
- Use fdel to remove data at intersecting frequencies from frd models before merging them with fcat. fcat produces an error when you attempt to merge frd models that have intersecting frequency data.
- To remove data from an frd model within a range of frequencies, use fselect.

\author{
See Also \\ idfrd | fcat | fselect | frd
}

\section*{feedback}

Identify possible feedback data

\section*{Syntax}
[fbck,fbck0,nudir] = feedback(Data)

\section*{Description}

Data is an iddata set with \(N y\) outputs and \(N u\) inputs.
fbck is an \(N y\)-by- \(N u\) matrix indicating the feedback. The \(k y, k u\) entry is a measure of feedback from output \(k y\) to input \(k u\). The value is a probability \(P\) in percent. Its interpretation is that if the hypothesis that there is no feedback from output \(k y\) to input \(k u\) were tested at the level \(P\), it would have been rejected. An intuitive but technically incorrect way of thinking about this is to see \(P\) as "the probability of feedback." Often only values above \(90 \%\) are taken as indications of feedback. When fbck is calculated, direct dependence at lag zero between \(u(t)\) and \(y(t)\) is not regarded as a feedback effect.
fbck0: Same as fbck, but direct dependence at lag 0 between \(u(t)\) and \(y(t)\) is viewed as feedback effect.
nudir: A vector containing those input numbers that appear to have a direct effect on some outputs, that is, no delay from input to output.

\author{
See Also \\ advice | iddata
}

\section*{ffplot}

Compute and plot frequency response magnitude and phase for linear frequencies

Note: ffplot will be removed in a future release. Use bode or bodeplot instead.

\section*{Syntax}
```

ffplot(m)
ffplot(m,w)
ffplot(m,'noise')
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)

```

\section*{Description}
ffplot (m) plots a frequency response plot for the model m, which can be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency response is a function of linear frequencies in units of inverse time (stored as the TimeUnit model property). The default frequency values are determined from the model dynamics. For time series spectra, phase plots are omitted. For MIMO models, press Enter to view the next plot in the sequence of different I/O channel pairs, annotated using the InputNames and OuputNames model properties.
ffplot (\(m, w\)) plots a frequency response plot at specified frequencies \(w\) in inverse time units, which can be:
- A vector of values.
- \{wmin, wmax\}, which specifies 100 linearly spaced frequency values ranging from a minimum value wmin and a maximum value wmax.
- \{wmin, wmax , np\}, which specifies np linearly spaced frequency values.

Note: For idfrd models, you cannot specify individual frequencies and can only limit the frequencies range for the internally stored frequencies using \{wmin, wmax\}.
ffplot(m, 'noise') plots a frequency response plot of the output noise spectra when the model contains noise spectrum information.
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill') plots a frequency response plot for several models. sd specifies the confidence region as a positive number that represents the number of standard deviations. The argument 'fill' indicates that the confidence region is color filled. mode = 'same' displays all I/O channels in the same plot. Set \(a p=\) ' \(A\) ' to show only amplitude plots, or \(a p=' P\) ' to show only phase plots.
[mag,phase,w] = ffplot(m) computes the magnitude mag and phase values of the frequency response, which are 3-D arrays with dimensions (number of outputs)-by(number of inputs)-by-(length of w). \(w\) specifies the frequency values for computing the response even if you did not specify it as an input. For SISO systems, mag (1, 1, k) and phase (\(1,1, k\)) are the magnitude and phase (in degrees) at the frequency \(w(k)\). For MIMO systems, mag \((i, j, k)\) is the magnitude of the frequency response at frequency \(w(k)\) from input \(j\) to output \(i\), and similarly for phase (\(i, j, k\)). When \(m\) is a time series, mag is its power spectrum and phase is zero.
[mag,phase,w,sdmag,sdphase] = ffplot(m) computes the standard deviations of the magnitude sdmag and the phase sdphase. sdmag is an array of the same size as mag, and sdphase is an array of the same size as phase.

\section*{See Also}
bode | etfe | freqresp | idfrd | nyquist | spa | spafdr

\section*{fft}

Transform iddata object to frequency domain data

\section*{Syntax}

Datf \(=\) fft (Data)
Datf \(=\) fft (Data, \(N\))
Datf \(=\) fft(Data, \(N\), complex')

\section*{Description}

Datf \(=f f t(\) Data \()\) transforms time-domain data to frequency domain data. If Data is a time-domain iddata object with real-valued signals and with constant sampling interval Ts, Datf is returned as a frequency-domain iddata object with the frequency values equally distributed from frequency 0 to the Nyquist frequency. Whether the Nyquist frequency actually is included or not depends on the signal length (even or odd). Note that the FFTs are normalized by dividing each transform by the square root of the signal length. That is in order to preserve the signal power and noise level.

Datf \(=f f t(\) Data, \(N)\) specifies the transformation length. In the default case, the length of the transformation is determined by the signal length. A second argument N will force FFT transformations of length N, padding with zeros if the signals in Data are shorter and truncating otherwise. Thus the number of frequencies in the real signal case will be \(\mathrm{N} / 2\) or \((\mathrm{N}+1) / 2\). If Data contains several experiments, N can be a row vector of corresponding length.

Datf \(=\mathrm{fft}(\) Data, N, ' complex') specifies to include negative frequencies. For real signals, the default is that Datf only contains nonnegative frequencies. For complexvalued signals, negative frequencies are also included. To enforce negative frequencies in the real case, add a last argument, 'Complex'.

\section*{See Also}
iddata | ifft | spa

\section*{findop(idnlarx)}

Compute operating point for nonlinear ARX model

\section*{Syntax}
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

```

\section*{Description}
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes operatingpoint state values, X , and input values, U , from steady-state specifications for an idnlarx model. For more information about the states of an idnlarx model, see "Definition of idnlarx States" on page 1-415.
\([X, U]=\) findop (SYS, SPEC) computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
\([X, U]=\) findop(SYS, 'snapshot', \(T, U I N, X O)\) computes the operating point at a simulation snapshot of time \(T\) using the specified input and initial state values.
\([\mathrm{X}, \mathrm{U}, \mathrm{REPORT}]=\) findop (...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, ..., PVPairs) specifies property-value pairs for setting algorithm options.

\section*{Input Arguments}
- SYS: idnlarx (nonlinear ARX) model.
- 'steady ': Computes operating point using steady-state input and output levels.
- 'snapshot ': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown.
- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC(SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec (idnlarx) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.
- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.

\section*{Output Arguments}
- X: Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the \(\infty\) norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.

\section*{Examples}

In this example, you compute the operating point of an idnlarx model for a steady-state input level of 1 .

1 Estimate an idnlarx model from sample data iddata2.
load iddata2; M = nlarx(z2,[4 3 2 \(]\), 'wavenet');
2 Compute the steady-state operating point for an input level of 1.
x0 = findop(M,'steady', \(1, \mathrm{NaN}\))

\section*{More About}

\section*{Algorithms}
findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

\section*{Computing the Operating Point from Steady-State Specifications}

You specify to compute the steady-state operating point by calling findop in either of the following ways:
\([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'steady', InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
When you use the syntax [\(\mathrm{X}, \mathrm{U}\)] = findop(SYS, 'steady', InputLevel, OutputLevel), the algorithm assumes the following operating-point specifications:
- All finite input values are fixed values. Any \(\mathbf{N a N}\) values specify an unknown input signal with the initial guess of \(\mathbf{0}\).
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of \(\mathbf{0}\).
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax \([\mathrm{X}, \mathrm{U}]=\) findop (SYS, SPEC), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).

To compute the states, X , and the input, U , of the steady-state operating point, findop uses the algorithm specified in the SearchMethod property of MODEL.Algorithm to minimize the norm of the error \(e(t)=y(t)-f(x(t), u(t))\), where \(f\) is the nonlinearity estimator, \(x(t)\) are the model states, and \(u(t)\) is the input.

The algorithm uses the following independent variables for minimization:
- Unknown (unspecified) inputs
- Output signals

Because the states of a nonlinear ARX (idnlarx) model are delayed samples of the input and output variables, the values of all the states are the constant values of the corresponding steady-state inputs and outputs. For more information about the definition of nonlinear ARX model states, see "Definition of idnlarx States" on page 1-415.

\section*{Computing the Operating Point at a Simulation Snapshot}

When you use the syntax \([\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}\), 'snapshot', \(\mathrm{T}, \mathrm{UIN}, \mathrm{XO})\), the algorithm simulates the model output until the snapshot time, T. At the snapshot time, the algorithm passes the input and output samples to the data2state command to map these values to the current state vector.

Note: For snapshot-based computations, findop does not perform numerical optimization.
```

See Also
data2state(idnlarx) | operspec(idnlarx) | sim(idnlarx)

```

\section*{findop(idnlhw)}

Compute operating point for Hammerstein-Wiener model

\section*{Syntax}
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

```

\section*{Description}
[X,U] = findop(SYS,'steady', InputLevel,OutputLevel) computes operatingpoint state values, X , and input values, U , from steady-state specifications for an idnlhw model. For more information about the states of an idnlhw model, see "idnlhw States" on page 1-448.
[\(\mathrm{X}, \mathrm{U}]=\) findop(SYS,SPEC) computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
\([\mathrm{X}, \mathrm{U}]=\mathrm{findop}\left(\mathrm{SYS}\right.\), 'snapshot \({ }^{\text {, } \mathrm{T}, \mathrm{UIN}, \mathrm{XO}) \text { computes the operating point at a }}\) simulation snapshot of time \(T\) using the specified input and initial state values.
\([\mathrm{X}, \mathrm{U}, \mathrm{REPORT}]=\) findop (...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, ..., PVPairs) specifies property-value pairs for setting algorithm options.

\section*{Input Arguments}
- SYS: idnlhw (Hammerstein-Wiener) model.
- 'steady ': Computes operating point using steady-state input and output levels.
- 'snapshot ': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown. Do not enter OutputLevel when InputLevel does not contain any NaN values.
- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC(SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec (idnlhw) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.
- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.

\section*{Output Arguments}
- X: Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the \(\infty\) norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.

\section*{Examples}

In this example, you compute the operating point of an idnlhw model for a steady-state input level of 1 .

1 Estimate an idnlhw model from sample data iddata2.
```

load iddata2;
M = nlhw(z2,[4 3 2],'wavenet','pwl');

```

2 Compute the steady-state operating point for an input level of 1.
```

x0 = findop(M,'steady',1,NaN)

```

\section*{More About}

\section*{Algorithms}
findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

\section*{Computing the Operating Point from Steady-State Specifications}

You specify to compute the steady-state operating point by calling findop in either of the following ways:
\([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'steady', InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
When you use the syntax [\(\mathrm{X}, \mathrm{U}\)] = findop(SYS, 'steady', InputLevel, OutputLevel), the algorithm assumes the following operating-point specifications:
- All finite input values are fixed values. Any \(\mathbf{N a N}\) values specify an unknown input signal with the initial guess of \(\mathbf{0}\).
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of \(\mathbf{0}\).
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax \([\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}, \mathrm{SPEC})\), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).
findop uses a different approach to compute the steady-state operating point depending on how much information you provide for this computation:
- When you specify values for all input levels (no NaN values). For a given input level, \(U\), the equilibrium state values are \(X=\operatorname{inv}(I-A) * B^{*} f(U)\), where \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]=\) ssdata (model. LinearModel), and \(f()\) is the input nonlinearity.
- When you specify known and unknown input levels. findop uses numerical optimization to minimize the norm of the error and compute the operating point. The total error is the union of contributions from \(e_{1}\) and \(e_{2}, e(t)=\left(e_{1}(t) e_{2}(t)\right)\), such that:
- \(e_{1}\) applies for known outputs and the algorithm minimizes \(e_{1}=y-g(L(x, f(u)))\), where \(f\) is the input nonlinearity, \(L(x, u)\) is the linear model with states \(x\), and \(g\) is the output nonlinearity.
- \(e_{2}\) applies for unknown outputs and the error is a measure of whether these outputs are within the specified minimum and maximum bounds. If a variable is within its specified bounds, the corresponding error is zero. Otherwise, the error is equal to the distance from the nearest bound. For example, if a free output variable has a value \(z\) and its minimum and maximum bounds are \(L\) and \(U\), respectively, then the error is \(e_{2}=\max [z-U, L-z, 0]\).

The independent variables for the minimization problem are the unknown inputs. In the error definition \(e\), both the input \(u\) and the states \(x\) are free variables. To get an error expression that contains only unknown inputs as free variables, the algorithm findop specifies the states as a function of inputs by imposing steadystate conditions: \(x=\operatorname{inv}(I-\mathrm{A}) * \mathrm{~B}^{*} f(\mathrm{U})\), where \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]\) are state-space parameters corresponding to the linear model \(L(x, u)\). Thus, substituting \(x=\operatorname{inv}(I-A) * \mathrm{~B}^{*} f(\mathrm{U})\) into the error function results in an error expression that contains only unknown inputs as free variables computed by the optimization algorithm.

\section*{Computing the Operating Point at a Simulation Snapshot}

When you use the syntax \([\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}\), 'snapshot', \(\mathrm{T}, \mathrm{UIN}, \mathrm{XO})\), the algorithm simulates the model output until the snapshot time, T. At the snapshot time,
the algorithm computes the inputs for the linear model block of the Hammerstein-Wiener model (LinearModel property of the idnlhw object) by transforming the given inputs using the input nonlinearity: \(w=f(u)\). findop uses the resulting \(w\) to compute x until the snapshot time using the following equation: \(x(\mathrm{t}+1)=A x(\mathrm{t})+B w(\mathrm{t})\), where [\(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\)] = ssdata(model.LinearModel).

Note: For snapshot-based computations, findop does not perform numerical optimization.

\section*{See Also}
findstates(idnlhw) | operspec(idnlhw) | sim(idnlhw)

\section*{findstates(idParametric)}

Estimate initial states of identified linear state-space model from data

\section*{Syntax}
```

x0 = findstates(sys,data)

```
x0 = findstates(sys,data,K)
x0 = findstates(sys,data,K,opt)

\section*{Description}
x0 = findstates(sys,data) estimates the initial state values of a state-space model, sys, to maximize the least squares fit between the measured output data, data, and the model response.
x0 = findstates(sys,data,K) specifies the prediction horizon, \(K\), for computing the response of sys.
x0 = findstates(sys,data, K,opt) estimates the initial state using the option set, opt, to specify initial condition constraints, signal offsets, etc.

\section*{Input Arguments}

\section*{sys}

Identified linear state-space model.
Specify sys as an idss or idgrey model.

\section*{data}

Input-output data.
Specify data as an iddata object with input/output dimensions that match sys.
data can be a frequency-domain iddata object. Ideally, the frequency vector of data should be symmetric about the origin.

If you are converting time-domain data into frequency-domain data, use fft. Use the 'compl' input argument with fft and ensure that there is sufficient zero padding. Note that for an \(N\)-point fft, the input/output signals are scaled by \(1 / \operatorname{sqrt}(N)\). Therefore, the estimated x 0 vector is also scaled by this factor. So, scale your data appropriately when you compare x 0 between the time-domain and frequency-domain.

\section*{K}

Prediction horizon for computing the response of sys.
Specify K as a positive integer between 1 and Inf. The most common values used are:
- K=1 - Minimizes the 1 -step prediction error. That is, the 1-step ahead prediction response of sys is compared to the output signals in data to determine \(x 0\).
- K=Inf - Minimizes the simulation error. That is, the difference between the measured output, data.y, and the simulated response of sys to the measured input data, data.u.

For continuous-time models, specify K as either 1 or Inf.
For continuous-time frequency-domain data, specify K as Inf.
Default: 1 (for all data except continuous-time frequency-domain data)

\section*{opt}

Option set.
opt is an options set that allows you to constrain the initial state, remove signal offsets, etc.

Use findstatesOptions to create the options set.

\section*{Output Arguments}
x0
Estimated initial state.
For multi-experiment data, x 0 is a matrix with one column for each experiment.

\section*{Examples}

\section*{Estimate Initial States of State-Space Model}

Estimate an idss model and simulate it such that the response of the estimated model matches the estimation data's output signal as closely as possible.

Load sample data.
load iddata1 z1;
Estimate a linear model from the data.
```

model = ssest(z1,2);

```

Estimate the value of the initial states to best fit the measured output z1.y.
```

x0est = findstates(model,z1,Inf);

```

Simulate the model.
```

opt = simOptions('InitialCondition',x0est);
sim(model,z1(:,[],:),opt);

```

Simulated output \#1: y1

\section*{See Also}
compare | findstates(idnlarx) | findstates(idnlgrey) |
findstates(idnlhw) | findstatesOptions | forecast | idpar | pe | predict | sim| ssest

\section*{findstates(idnlarx)}

Estimate initial states of nonlinear ARX model from data

\section*{Syntax}
```

XO = findstates(MODEL,DATA)
XO = findstates(MODEL,DATA,XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs)
[XO, REPORT] = findstates(...)

```

\section*{Description}

XO = findstates(MODEL,DATA) estimates the initial states of an idnlarx model that minimize the error between the output measurements in DATA and the predicted output of the model. The states of an idnlarx model are defined as the delayed samples of input and output variables. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 1-415.

XO = findstates(MODEL,DATA, XOINIT) specifies an initial guess for estimating the initial states.

XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM) allows switching between prediction-error (default) and simulation-error minimization.

XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs) lets you specify the algorithm properties that control the numerical optimization process as propertyvalue pairs.
[XO, REPORT] = findstates(...) creates a report to summarize results of numerical optimization that is performed to search for the model states.

\section*{Input Arguments}
- MODEL: idnlarx model.
- DATA: iddata object from which to estimate the initial states of MODEL.
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL (sum (getDelayInfo (MODEL))).
- PRED_OR_SIM: Specifies minimization criteria using one of the following values:
- 'prediction': (Default) Estimation of initial states by minimizing the difference between the measured output data and 1-step-ahead predicted response of the model.
- 'simulation': Estimation of initial states by minimizing the difference between the measured output and the simulated response of the model. This estimation algorithm can be slower than 'prediction'.
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL. Algorithm properties using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.

\section*{Output Arguments}
- XO: Estimated initial state vector corresponding to time DATA. TStart. For multiexperiment data, XO is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod ': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop ': String describing why the estimation was stopped.
- 'Iterations ': Number of iterations carried out during estimation.
- 'FinalCost ': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality ': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

\section*{Examples}

\section*{Estimating Initial States}

In this example, you use sample data z1 to create a nonlinear ARX model. You use findstates to compute the initial states of the model such that the difference between the predicted output of the model and the output data in \(z 2\) is minimized.

1 Load the sample data and create two data objects \(z 1\) and \(z 2\).
```

load twotankdata
% Create data objects z1 and z2.
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

```

2 Estimate the idnlarx model.
```

% Estimate a nonlinear ARX model from data in z1.
mw1 = nlarx(z1,[5 1 3 3],wavenet('NumberOfUnits',8));

```

3 Estimate the initial states of the model.
```

% Find the initial states XO of mw1 that minimize
% the error between the output data of z2 and the
% simulated output of mw1.
XO = findstates(mw1,z2,[],'sim')

```

\section*{Estimating Initial States for Multiple-Experiment Data}

In this example, you estimate the initial states for each data set in a multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:
```

% Create a multi-experiment data set.

```
zm = merge(z1,z2);

2 Estimate the initial states for each experiment in the data set, such that the one-step-ahead prediction error is minimized for each data set.
```

% Estimate initial states for each data set in zm.
XO = findstates(mw1,zm)

```
```

See Also
data2state(idnlarx) | getDelayInfo | findop(idnlarx) |
findstates(idParametric) | findstates(idnlhw)

```

\section*{findstates(idnlgrey)}

Estimate initial states of nonlinear grey-box model from data

\section*{Syntax}
```

XO = findstates(NLSYS,DATA);
[XO,ESTINFO] = findstates(NLSYS,DATA);
[XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT);

```

\section*{Description}

XO = findstates(NLSYS,DATA); estimates the initial states of an idnlgrey model from given data. For more information about the states of idnlgrey models, see "Definition of idnlgrey States" on page 1-433.
[XO,ESTINFO] = findstates(NLSYS, DATA) ; returns basic information about the estimation.
[XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT); specifies an initial guess for X0.

\section*{Input Arguments}
- NLSYS: idnlgrey model whose output is to be predicted.
- DATA: Input/output data DATA = [Y U], where U and Y are the following:
- U: Input data that can be given either as an iddata object or as a matrix \(U=\) [U1 U2 ...Um], where the \(k^{\text {th }}\) column vector is input Uk
- Y: Either an iddata object or a matrix of outputs (with as many columns as there are outputs).

Note: For time-continuous idnlgrey models, DATA passed as a matrix will cause the data sample interval \(T s\) to be assumed to be equal to 1 .
- XOINIT: Initial state strategy to use:
- 'zero': Use zero initial state and estimate all states
(NLSYS. InitialStates.Fixed is thus ignored). Notice that all states are estimated, whereas they are fixed in predict.
- 'estimate': NLSYS. InitialStates determines the values of the states, but all initial states are estimated (NLSYS. InitialStates. Fixed is thus ignored).
- 'model': (Default) NLSYS. InitialStates determines the values of the initial states, which initial states to estimate, as well as their maximum and minimum values.
- vector/matrix: Column vector of appropriate length to be used as an initial guess for initial states. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. With this option, all initial states are estimated (and not fixed as in predict) (NLSYS.InitialStates.Fixed is thus ignored).
- struct array: Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments).
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable for all states) specifying whether the initial state is fixed or not.

\section*{Output Arguments}
- XO: Matrix containing the initial states. In the single experiment case it is a column vector of length \(N x\). For multi-experiment data, XO is a matrix with as many columns as there are experiments.
- ESTINFO: Structure or Ne-by-1 structure array containing basic information about the estimation result (some of the fields normally stored in NLSYS. EstimationInfo). For multi-experiment data, ESTINFO is an Ne-by-1 structure array with elements providing initial state estimation information related to each experiment.

\section*{Examples}

\section*{Estimating Individual Initial States Selectively}

In this example you estimate the initial states of a model selectively, fixing the first state and allowing the second state of the model to be estimated. First you create a model from sample data and set the Fixed property of the model such that the second state is free and the first is fixed.

1 Specify the file describing the model structure, the model orders, and model parameters.
```

% Specify the file describing the model structure:
FileName = 'dcmotor_m';
% Specify the model orders [ny nu nx]
Order = [2 1 2];
% Specify the model parameters
% (see idnlgreydemo1 for more information)
Parameters = [0.24365; 0.24964];

```

2 Estimate the model parameters and set the model properties:
```

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage','OutputName', ...
{'Angular position', 'Angular velocity'});

```

3 Free the second state while keeping the first one fixed.
```

setinit(nlgr,'Fixed',{1 0});

```

4 Load the estimation data.
```

load(fullfile(matlabroot,'toolbox','ident',...
'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor',...
'InputName', 'Voltage', 'OutputName',...
{'Angular position','Angular velocity'});

```

5 Estimate the free states of the model.
```

[XO,EstInfo] = findstates(nlgr,z)

```

\section*{Estimating Initial States Starting from States Stored in Model}

This example shows how you can estimate all of the initial states, starting from the initial state \(\mathbf{0}\), then from the initial states stored in the model nlgr, and finally using a numerical initial states vector as the initial guess.

1 Estimate all the initial states starting from 0.
```

XO = findstates(nlgr,z,'zero');

```

2 Estimate the free initial states specified by nlgr, starting from the initial state stored in nlgr.
```

XO = findstates(nlgr, z, 'mod');

```

3 Estimate all the initial states, starting from an initial state vector that you specify.
```

nlgr.Algorithm.Display = 'full';
% Starting from an initial state vector [10;10]
XO = findstates(nlgr,z,[10;10])

```

\section*{Advanced Use of findstates(idnlgrey)}

The following example shows advanced use of findstates. Here you estimate states for multi-experiment data, such that the states of model nlgr are estimated separately for each experiment. After creating a 3 -experiment data set z3, you estimate individual initial states separately.

1 Create a three-experiment data set.
z3 \(=\) merge(z, z, z); \% 3-experiment data
2 Fix some initial states and only estimate the free initial states starting of with the initial state in nlgr . This means that both elements of state vector 1 will be estimated, that no state of the second state vector will be estimated, and that only the first state of state vector 3 is estimated.
```

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

```

3 Specify which initial states to fix, and set the Display property of Algorithm to 'full'.
nlgr.InitialStates(1). Fixed \(=\) [true false true];
```

nlgr.InitialStates(2).Fixed = [true false false];

```
nlgr.Algorithm.Display = 'full';

4 Estimate the initial states and obtain information about the estimation.
[XO, EstInfo] = findstates(nlgr, z3);
```

See Also
findstates(idnlarx) | findstates(idnlhw) | predict | sim

```

\section*{findstates(idnlhw)}

Estimate initial states of nonlinear Hammerstein-Wiener model from data

\section*{Syntax}
```

XO = findstates(MODEL,DATA)
XO = findstates(MODEL,DATA,XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PVPairs)
[XO, REPORT] = findstates(...)

```

\section*{Description}

XO = findstates(MODEL, DATA) estimates the initial states of an idnlhw model from given data. The states of an idnlhw model are defined as the states of its embedded linear model (Model.LinearModel). For more information about the states of idnlhw models, see "idnlhw States" on page 1-448.

XO = findstates(MODEL, DATA, XOINIT) specifies an initial guess for value of XO using XOINIT.

XO = findstates(MODEL, DATA, XOINIT, PVPairs) specifies property-value pairs representing the algorithm properties that control the numerical optimization process.
[X0, REPORT] = findstates (...) creates a report to summarize results of numerical optimization that is performed to search for the model states.

\section*{Input Arguments}
- MODEL: idnlhw model.
- DATA: iddata object from which to estimate the initial states of MODEL.
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL.
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL. Algorithm properties
using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.

\section*{Output Arguments}
- X0: Estimated initial state vector corresponding to time DATA. TStart. For multiexperiment data, XO is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod ': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop ': String describing why the estimation was stopped.
- 'Iterations ' : Number of iterations carried out during estimation.
- 'FinalCost': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality ': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

\section*{Examples}

In this example, you create an idnlarx model from sample data and estimate initial states using another data set. Next you jointly estimate the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z1 and z2.
load twotankdata
z = iddata(y, u, 0.2,'Name','Two tank system');
\(z 1=z(1: 1000) ; ~ z 2=z(1001: 2000) ;\)
2 Estimate an idnlhw model from data.
m1=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')
3 Estimate the initial states of m 1 using data \(z 2\).
```

% Estimate initial states. View estimation trace and use
% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[],'MaxIter',5,'Display','on')

```

4 Estimate states using multiple-experiment data. There are separate sets of initial states for each experiment. The states of all data experiments are jointly estimated, and X 0 is returned as a matrix with as many columns as there are data experiments.
```

zm = merge(z1,z2);
XO = findstates(m1, zm)

```

\section*{See Also}
findstates(idnlarx) | findstates(idParametric) | findop(idnlhw)

\section*{findstatesOptions}

\author{
Option set for findstates
}

\section*{Syntax}
```

opt = findstatesOptions

```
opt = findstatesOptions(Name, Value)

\section*{Description}
opt = findstatesOptions creates the default options set for findstates(idParametric).
opt = findstatesOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'InitialState'}

Specify how the initial states are handled.
InitialState requires one of the following:
- 'e' - Estimate initial state such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e ', but absorbs nonzero delays into the model coefficients. Use this option for discrete-time models only.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only and when \(K\) is 1 or Inf. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: 'e'

\section*{' InputOffset ' - Remove offset from time-domain input data during estimation [] (default) | vector of positive integers}

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{' OutputOffset ' - Remove offset from time-domain output data during estimation [] (default) | vector}

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{'OutputWeight'}

Weight of output for initial condition estimation.
OutputWeight requires one of the following:
- [] — No weighting is used. This option is the same as using eye (Ny) for the output weight, where Ny is the number of outputs.
- 'noise ' - Inverse of the noise variance stored with the model.
- Matrix - A positive, semidefinite matrix of dimension \(N y\)-by- \(N y\), where \(N y\) is the number of outputs.

\section*{Default: []}

\section*{Output Arguments}

\section*{opt}

Option set containing the specified options for findstates(idParametric).

\section*{Examples}

\section*{Create Default Options Set for State Identification}
opt = findstatesOptions;

\section*{Identify Initial States using Options Set}

Create an options set for findstates(idParametric) by using an initial state specification object.

Identify a state-space model from data.
```

load iddata8 z8;
ssest_opt = ssestOptions('Focus','simulation');
sys = ssest(z8,4,ssest_opt);

```
z8 is an iddata object containing time-domain system response data.
ssest_opt specifies the 'Focus' option for state-space estimation as 'simulation'. sys is a fourth-order idss model that is identified from the data.

Configure a specification object for the initial states of sys.
```

xOobj = idpar([1;nan(3,1)]);
xOobj.Free(1) = false;
xOobj.Minimum(2) = 0;

```
```

x0obj.Maximum(2) = 1;

```
xOobj specifies estimation constraints on the initial conditions.
The value of the first state is specified as 1 when xOobj is created. \(\mathrm{xOobj} . \operatorname{Free(1)}=\) false specifies the first initial state as a fixed estimation parameter.

The second state is unknown. But, x0obj.Minimum(2) = 0 and x0obj.Maximum(2) = 1 specify the lower and upper bounds of the second state as 0 and 1 , respectively.

Create an option set for findstates to identify the initial states of sys.
opt = findstatesOptions('InitialState',xOobj);
Alternatively, use dot notation to set the values of opt.
```

opt = findstatesOptions;

```
opt.InitialState = xOobj;

Identify the initial states of sys.
x0_estimated = findstates(sys,z8,Inf,opt);

\section*{See Also}
findstates(idParametric) | idpar

\section*{fnorm}

Pointwise peak gain of FRD model

\section*{Syntax}
```

fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)

```

\section*{Description}
fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency response contained in the FRD model sys, that is, the peak gain at each frequency point. The output fnrm is an FRD object containing the peak gain across frequencies.
fnrm = fnorm(sys, ntype) computes the frequency response gains using the matrix norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE values.

\section*{See Also}
norm \| abs

\section*{forecast}

Forecast linear system response into future

\section*{Syntax}
```

yf = forecast(model,past_data,K)
yf = forecast(model,past_data,K,future_inputs)
yf = forecast(model,past_data,K,___,opt)
[yf,x0efmod] = forecast(model,past_data,K,___)

```

\section*{Description}
\(y f=\) forecast(model, past_data, \(K\)) forecasts the output of a linear identified time series model, model, K steps into the future using the historical output data record, past_data. In this case, future denotes the time samples beyond the last sample time in past_data.
\(y f=\) forecast(model, past_data,K,future_inputs) uses the future values of the inputs to model, future_inputs to forecast the response of an input-output model.
yf = forecast(model, past_data,K,__, opt) forecasts the future output of model using the option set opt to specify the forecasting algorithm options.
[yf,x0efmod] = forecast(model, past_data, K,__) returns the estimated values for initial states, \(x 0 e\), and a forecasting model, fmod.

\section*{Input Arguments}

\section*{model}

Identified linear model.

\section*{past_data}

Historical input/output values.

If model is a time-series model, which does not have input signals, then past_data can be specified as:
- An iddata object with no inputs
- A matrix of historical time-series data

\section*{K}

Time horizon of the forecast.
K must be a positive integer that is a multiple of the sampling time of the data, past_data.Ts.

\section*{Default:}

\section*{future_inputs}

Future values of inputs to model.
Specify future_inputs for the time interval past_data.Tstart + (N+1:N \(+K\)) *past_data. Ts, where \(N\) is the number of samples in past_data.
future_inputs must be a matrix of size [\(\mathrm{K}, \mathrm{Nu}\)], where K is forecast horizon and Nu is the number of inputs.
future_inputs is only relevant if model is not a time-series model.
Alternatively, use an iddata model to specify future_inputs.
Use [] if model is a time-series model.
If past_data is specified for multiple experiments, then specify future_inputs as:
- A multiexperiment iddata object
- Cell array of matrices, with an array entry for each corresponding past_data experiment data set

Default: 0

\section*{opt}

Options set for forecast.

Use forecastOptions to define options.

\section*{Output Arguments}
yf
Forecasted response.
yf is the forecasted response at times after the last sample time in past_data. In true time, yf contains data for the time interval past_data. Tstart + (\(\mathrm{N}+1: \mathrm{N}\) \(+K)\) *past_data. Ts. \(N\) is the number of samples in past_data.

\section*{x0e}

Estimated initial states.
x 0 e is returned only for state-space systems.

\section*{fmod}

Forecasting model.
fmod is a dynamic system whose simulation, using future_inputs and \(x 0 e\), yields yf as the output.
fmod is always a discrete-time system.
If past_data is specified for multiple experiments, then fmod is an array of dynamic models, with each entry corresponding to an experiment in past_data.

\section*{Examples}

\section*{Forecast Future Values of a Sinusoidal Signal}

Forecast the values of a sinusoidal signal using an AR model.
Generate and plot data.
```

data = iddata(sin(0.1*[1:100])',[]);
plot(data)

```

\section*{Input-Output Data}

Fit an AR model to the sine wave.
sys \(=\operatorname{ar}(\) data,2);
Forecast the values into the future for a given time horizon.
K = 100;
p = forecast(sys,data,K);
K specifies the forecasting time horizon as 100 samples. p is the forecasted model response.

Analyze the forecasted data.
```

plot(data,'b',p,'r'), legend('measured','forecasted')

```

\section*{Input-Output Data}

\section*{Forecast Response of Time-Series Model}

Forecast the response of a time-series model for a given number of time steps in the future.

Obtain a time-series model and past data.
```

load iddata9 z9

```
model \(=\operatorname{ar}(z 9,4)\);
past_data \(=\) z9.OutputData(1:51); \% double data
z9 is an iddata object that contains the measured output only.
model is an idpoly time-series model.
past_data contains the first 51 data points of \(z 9\).
Forecast the system response into the future for a given time horizon.
K = 100;
yf = forecast(model, past_data(1:50),K);
K specifies the forecasting time horizon as 100 samples, with the same sampling time as past_data.
\(y f\) is the forecasted model response.
Analyze the forecasted data.
```

t = z9.SamplingInstants;
t1 = t(1:51);
t2 = t(51:150)';
plot(t1,past_data,t2,yf,'r')
legend('Measured','Forecasted')

```


\section*{Forecast Model Response Using Future Inputs}

Obtain past data, future inputs, and identified linear model.
```

load iddata1 z1
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh'); % integrated data
past_data = z1(1:100);
future_inputs = z1.u(101:end);
model = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);

```
z 1 is an iddata object that contains integrated data. model is an idpoly model. past_data contains the first 100 data points of \(\mathbf{z 1}\). future_inputs contains the last 200 data points of \(z 1\).

Forecast the system response into the future for a given time horizon and future inputs.
```

K = 200;
yf = forecast(model,past_data,K,future_inputs);

```

K specifies the forecasting time horizon as 200 samples, with the same sampling time as past_data.
\(y f\) is the forecasted model response.
Analyze the forecasted data.
plot(past_data,yf);
legend('Measured', 'Forecasted')

\section*{Input-Output Data}

\section*{See Also}
ar | arx | compare | forecastOptions | iddata | lsim | n4sid | predict | sim

\section*{forecastOptions}

Option set for forecast

\section*{Syntax}
```

opt = forecastOptions
opt = forecastOptions(Name,Value)

```

\section*{Description}
opt = forecastOptions returns the default option set for forecast.
opt = forecastOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{'InitialCondition'}

Specify initial conditions.
InitialCondition requires one of the following:
- 'z' — Zero initial conditions.
- 'e' - Estimate initial conditions such that the 1 -step prediction error is minimized for the observed output.
- 'd' - Similar to 'e ', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multiexperiment data, use a matrix with \(N e\) columns, where \(N e\) is the number of experiments. Use this option for state-space models only.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use XOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

The effects of initial conditions on the forecasted response is negligible if the observed data is for a sufficiently long time interval, or if the model has finite memory. For such systems, using zero initial conditions is sufficient. Otherwise, the initial conditions influence the forecasted values. This influence usually diminishes over the forecasted time interval.

Default: 'e'
'Input0ffset
Input signal offset.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data before the input is used to simulate the model.

\section*{Default: []}

\section*{'OutputOffset'}

Output signal offset.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{Default: []}

\section*{'OutputWeight'}

Weight of output for initial condition estimation.
OutputWeight requires one of the following:
- ' [] ' - No weighting. This is the same as using eye (Ny), where Ny is the number of outputs.
- 'noise ' - Inverse of the noise variance stored with the model.
- Matrix of doubles - A positive semidefinite matrix of dimension \(N y\)-by- \(N y\), where \(N y\) is the number of outputs.

\section*{Default: '[]'}

\section*{Output Arguments opt}

Option set containing the specified options for forecast.

\section*{Examples}

\section*{Create Default Options Set for Model Forecasting}

Create a default options set for forecast.
opt = forecastOptions;

\section*{Specify Options for Model Forecasting}

Create an options set for forecast using zero initial conditions and set the input offset to 5 .
```

opt = forecastOptions('InitialCondition','z','InputOffset',5);

```

Alternatively, use dot notation to set the values of opt.
```

opt = forecastOptions;

```
```

opt.InitialCondition = 'z';
opt.InputOffset = 5;

```

\section*{See Also}
forecast | idpar

\section*{fpe}

Akaike Final Prediction Error for estimated model

\section*{Syntax}
```

fp = fpe(Model1,Model2,Model3,...)

```

\section*{Description}

Model is the name of an idtf, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.
\(f p\) is returned as a row vector containing the values of the Akaike Final Prediction Error (FPE) for the different models.

\section*{Definitions}

Akaike's Final Prediction Error (FPE) criterion provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest FPE.

Note: If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Final Prediction Error (FPE) is defined by the following equation:
\[
F P E=V\left(\frac{1+d / N}{1-d / N}\right)
\]
where \(V\) is the loss function, \(d\) is the number of estimated parameters, and \(N\) is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for \(d \ll N\) and uses the following approximation to compute FPE:
\[
F P E=V(1+2 d / N)
\]

The loss function \(V\) is defined by the following equation:
\[
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
\]
where \(\theta_{N}\) represents the estimated parameters.

\section*{References}

Sections 7.4 and 16.4 in Ljung (1999).

\section*{See Also}
aic | goodnessOfFit

\section*{frdata}

Access data for frequency response data (FRD) object

\section*{Syntax}
```

[response,freq] = frdata(sys)
[response,freq,covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)

```

\section*{Description}
[response,freq] = frdata(sys) returns the response data and frequency samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at Nf frequencies:
- response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j) entry specifies the response from input \(j\) to output \(i\).
- freq is a column vector of length Nf that contains the frequency samples of the FRD model.

See the frd reference page for more information on the data format for FRD response data.
[response,freq, covresp] = frdata(sys) also returns the covariance covresp of the response data resp for idfrd model sys. The covariance covresp is a 5Darray where \(\operatorname{covH}(i, j, k,:,:)\) contains the 2 -by- 2 covariance matrix of the response \(\operatorname{resp}(i, j, k)\). The \((1,1)\) element is the variance of the real part, the \((2,2)\) element the variance of the imaginary part and the \((1,2)\) and \((2,1)\) elements the covariance between the real and imaginary parts.

For SISO FRD models, the syntax
[response,freq] = frdata(sys,'v')
forces frdata to return the response data as a column vector rather than a 3 dimensional array (see example below). Similarly
[response,freq,Ts, covresp] = frdata(sys, 'v') for an IDFRD model sys returns covresp as a 3 -dimensional rather than a 5 -dimensional array.
[response,freq,Ts] = frdata(sys) also returns the sample time Ts.
Other properties of sys can be accessed with get or by direct structure-like referencing (e.g., sys. Frequency).

\section*{Arguments}

The input argument sys to frdata must be an FRD model.

\section*{Examples}

\section*{Extract Data from Frequency Response Data Model}

Create a frequency response data model and extract the frequency response data.
Create a frequency response data by computing the response of a transfer function on a grid of frequencies.

H = tf([-1.2,-2.4, -1.5],[1, 20, 9.1]);
w = logspace(-2,3,101);
sys \(=f r d(H, w) ;\)
sys is a SISO frequency response data (frd) model containing the frequency response at 101 frequencies.

Extract the frequency response data from sys.
[response,freq] = frdata(sys);
response is a 1 -by- 1 -by-101 array. response \((1,1, k)\) is the complex frequency response at the frequency freq (\(k\)).

\section*{See Also}
frd | get \| set \| spectrum | idfrd \| freqresp

\section*{freqresp}

Frequency response over grid

\section*{Syntax}
```

[H,wout] = freqresp(sys)
H = freqresp(sys,w)
H = freqresp(sys,w,units)
[H,wout,covH] = freqresp(idsys,...)

```

\section*{Description}
[H,wout] = freqresp(sys) returns the frequency response of the dynamic system model sys at frequencies wout. The freqresp command automatically determines the frequencies based on the dynamics of sys.
\(H=\) freqresp(sys,w) returns the frequency response on the real frequency grid specified by the vector \(w\).
\(H=\) freqresp(sys, \(w\), units) explicitly specifies the frequency units of \(w\) with the string units.
[H , wout, covH] = freqresp(idsys, ...) also returns the covariance covH of the frequency response of the identified model idsys.

\section*{Input Arguments}

\section*{sys}

Any dynamic system model or model array.

\section*{w}

Vector of real frequencies at which to evaluate the frequency response. Specify frequencies in units of rad/TimeUnit, where TimeUnit is the time units specified in the TimeUnit property of sys.

\section*{units}

String specifying the units of the frequencies in the input frequency vector w. Units can take the following values:
- 'rad/TimeUnit' — radians per the time unit specified in the TimeUnit property of sys
- 'cycles/TimeUnit ' - cycles per the time unit specified in the TimeUnit property of sys
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

Default: 'rad/TimeUnit'

\section*{idsys}

Any identified model.

\section*{Output Arguments}

\section*{H}

Array containing the frequency response values.
If sys is an individual dynamic system model having Ny outputs and Nu inputs, H is a 3D array with dimensions Ny-by-Nu-by-Nw, where Nw is the number of frequency points. Thus, \(\mathrm{H}(:,:, k)\) is the response at the frequency \(w(k)\) or wout (\(k\)).

If sys is a model array of size [\(\mathrm{Ny} \mathrm{NuS1} . . . \mathrm{Sn}\)], H is an array with dimensions Ny -by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or idfrd), freqresp (sys,w) evaluates to NaN for values of w falling outside the frequency
interval defined by sys.frequency. The freqresp command can interpolate between frequencies in sys.frequency. However, freqresp cannot extrapolate beyond the frequency interval defined by sys.frequency.

\section*{wout}

Vector of frequencies corresponding to the frequency response values in H. If you omit w from the inputs to freqresp, the command automatically determines the frequencies of wout based on the system dynamics. If you specify w , then wout \(=\mathrm{w}\)

\section*{covH}

Covariance of the response \(H\). The covariance is a 5D array where \(\operatorname{covH}(i, j, k,:,:)\) contains the 2 -by- 2 covariance matrix of the response from the ith input to the \(j\) th output at frequency \(w(k)\). The \((1,1)\) element of this 2 -by- 2 matrix is the variance of the real part of the response. The (2,2) element is the variance of the imaginary part. The \((1,2)\) and \((2,1)\) elements are the covariance between the real and imaginary parts of the response.

\section*{Examples}

\section*{Frequency Response}

Compute the frequency response of the 2 -input, 2 -output system
\[
\text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
\]
```

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];
[H,wout] = freqresp(sys);

```

H is a 2-by-2-by- 45 array. Each entry \(\mathrm{H}(:,:, \mathrm{k})\) in H is a 2-by-2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency wout (k). The 45 frequencies in wout are automatically selected based on the dynamics of sys.

\section*{Response on Specified Frequency Grid}

Compute the frequency response of the 2 -input, 2 -output system
\[
\text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
\]
on a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per second.
```

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];
w = logspace(1,2,200);
H = freqresp(sys,w);

```

H is a 2 -by-2-by- 200 array. Each entry \(\mathrm{H}(:,:, \mathrm{k})\) in H is a 2 -by- 2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency \(w(k)\).

\section*{Frequency Response and Associated Covariance}

Compute the frequency response and associated covariance for an identified model at its peak response frequency.
load iddata1 z1
model = procest(z1, 'P2UZ');
\(w=4.26 ;\)
```

[H,~,covH] = freqresp(model, w)

```

\section*{Alternatives}

Use evalfr to evaluate the frequency response at individual frequencies or small numbers of frequencies. freqresp is optimized for medium-to-large vectors of frequencies.

\section*{More About}

\section*{Frequency Response}

In continuous time, the frequency response at a frequency \(\omega\) is the transfer function value at \(s=j \omega\). For state-space models, this value is given by
\[
H(j \omega)=D+C(j \omega I-A)^{-1} B
\]

In discrete time, the frequency response is the transfer function evaluated at points on the unit circle that correspond to the real frequencies. freqresp maps the real
frequencies \(w(1), \ldots, w(N)\) to points on the unit circle using the transformation \(z=e^{j \omega T_{s}}\). \(T_{s}\) is the sample time. The function returns the values of the transfer function at the resulting \(z\) values. For models with unspecified sample time, freqresp uses \(T_{s}=1\).

\section*{Algorithms}

For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s) and denominator(s) at the specified frequency points. For continuous-time state-space models (\(A, B, C, D\)), the frequency response is
\[
D+C(j \omega-A)^{-1} B, \quad \omega=\omega_{1}, \ldots, \omega_{N}
\]

For efficiency, \(A\) is reduced to upper Hessenberg form and the linear equation \((j \omega-A) X\) \(=B\) is solved at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. See [1] for more details on this technique.

\section*{References}
[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

\author{
See Also \\ evalfr | bode | nyquist | nichols | sigma | ltiview | interp | spectrum
}

\section*{fselect}

Select frequency points or range in FRD model

\section*{Syntax}
```

subsys = fselect(sys,fmin,fmax)
subsys = fselect(sys,index)

```

\section*{Description}
subsys \(=\) fselect(sys,fmin,fmax) takes an FRD model sys and selects the portion of the frequency response between the frequencies fmin and fmax. The selected range [fmin, fmax] should be expressed in the FRD model units. For an IDFRD model, the SpectrumData, CovarianceData and NoiseCovariance values, if non-empty, are also selected in the chosen range.
subsys = fselect(sys, index) selects the frequency points specified by the vector of indices index. The resulting frequency grid is
sys.Frequency(index)

\author{
See Also \\ idfrd | interp | fcat | fdel | frd
}

\section*{get}

Access model property values

\section*{Syntax}
```

Value = get(sys,'PropertyName')
Struct = get(sys)

```

\section*{Description}

Value \(=\) get(sys,'PropertyName') returns the current value of the property PropertyName of the model object sys. The string 'PropertyName ' can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). See reference pages for the individual model object types for a list of properties available for that model.

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard MATLAB structure with the property names as field names and the property values as field values.

Without left-side argument,
```

get(sys)

```
displays all properties of sys and their values.

\section*{Examples}

Consider the discrete-time SISO transfer function defined by
```

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

```

You can display all properties of \(h\) with
get (h)
```

num: {[0 1]}
den: {[11 2]}

```
```

        ioDelay: 0
        Variable: 'z'
            Ts: 0.1
    InputDelay: 0
    OutputDelay: 0
InputName: {'voltage'}
OutputName: {''}
InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]
Name:
Notes: {}
UserData: 'hello'

```
or query only about the numerator and sample time values by
```

get(h,'num')

```
ans \(=\)
 [1x2 double]
and
get(h,'ts')
ans \(=\)
 0.1000

Because the numerator data (num property) is always stored as a cell array, the first command evaluates to a cell array containing the row vector [01].

\section*{More About}

\section*{Tips}

An alternative to the syntax
```

Value = get(sys,'PropertyName')

```
is the structure-like referencing
```

Value = sys.PropertyName

```

For example,
sys.Ts
sys.a
sys.user
return the values of the sample time, \(A\) matrix, and UserData property of the (statespace) model sys.

\author{
See Also \\ getpvec|frdata| set | ssdata | tfdata|idssdata| polydata|getcov
}

\section*{getcov}

Parameter covariance of linear identified parametric model

\section*{Syntax}
```

cov_data = getcov(sys)
cov_data = getcov(sys,cov_type)
cov_data = getcov(sys,cov_type,'free')

```

\section*{Description}
cov_data = getcov(sys) returns the raw covariance of the parameters of a linear identified parametric model.
- If sys is a single model, then cov_data is an \(n p\)-by- \(n p\) matrix. \(n p\) is the number of parameters of sys.
- If sys is a model array, then cov_data is a cell array of size equal to the array size of sys.
cov_data(i,j,k,...) contains the covariance data for sys(:, : \(i, j, k, \ldots)\).
cov_data \(=\) getcov(sys,cov_type) returns the parameter covariance as either a matrix or a structure, depending on the covariance type that is specified.
cov_data \(=\) getcov(sys,cov_type,'free') returns the covariance data of only the free model parameters.

\section*{Examples}

\section*{Raw Parameter Covariance for Identified Model}

Obtain the identified model.
```

load iddata1 z1

```
```

sys = tfest(z1,2);

```

Get the raw parameter covariance for the model.
```

cov_data = getcov(sys)
cov_data =

1.2131	-4.3949	-0.0309	-0.5531	0
-4.3949	115.0838	1.8598	10.6660	0
-0.0309	1.8598	0.0636	0.1672	0
-0.5531	10.6660	0.1672	1.2433	0
0	0	0	0	0

```
cov_data contains the covariance matrix for the parameter vector [sys.num, sys.den(2:end), sys.ioDelay].
sys.den(1) is fixed to 1 and not treated as a parameter. The covariance matrix entries corresponding to the delay parameter (fifth row and column) are zero because the delay was not estimated.

\section*{Raw Parameter Covariance for Identified Model Array}

Obtain the identified model array.
```

load iddata1 z1;
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2);

```
sysarr is a 2-by-1 array of continuous-time, identified transfer functions.
Get the raw parameter covariance for the models in the array.
```

cov_data = getcov(sysarr)
cov_data =
[5\times5 double]
[7\times7 double]

```
cov_data is a 2 -by- 1 cell array. cov_data\{1\} and cov_data\{2\} are the raw parameter covariance matrices for sys1 and sys2.

\section*{Raw Covariance of Estimated Parameters of Identified Model}

Load the estimation data.
```

load iddata1 z1
z1.y = cumsum(z1.y);

```

Estimate the model.
```

init_sys = idtf([100 1500],[1 10 10 0]);
init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;
opt = tfestOptions('SearchMethod', 'lm');
sys = tfest(z1,init_sys,opt);

```
sys is an idtf model with six parameters, four of which are estimated.
Get the covariance matrix for the estimated parameters.
```

cov_type = 'value';
cov_data = getcov(sys,cov_type,'free')
cov_data =
1.0e+05

0.0269	-0.1237	-0.0001	-0.0017
-0.1237	1.0221	0.0016	0.0133
-0.0001	0.0016	0.0000	0.0000
-0.0017	0.0133	0.0000	0.0002

```
cov_data is a \(4 \times 4\) covariance matrix, with entries corresponding to the four estimated parameters.

\section*{Factored Parameter Covariance for Identified Model}

Obtain the identified model.
load iddata1 z1
```

sys = tfest(z1,2);

```

Get the factored parameter covariance for the model.
```

cov_type = 'factors';
cov_data = getcov(sys,cov_type);

```

\section*{Factored Parameter Covariance for Identified Model Array}

Obtain the identified model array.
```

load iddata1 z1
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2);

```
sysarr is a 2-by-1 array of continuous-time, identified transfer functions.
Get the factored parameter covariance for the models in the array.
```

cov_type = 'factors';
cov_data = getcov(sysarr,cov_type)
cov_data =
2x1 struct array with fields:
R
T
Free

```
cov_data is a 2 -by- 1 structure array. cov_data(1) and cov_data(2) are the factored
covariance structures for sys1 and sys2.
Factored Covariance of Estimated Parameters of Identified Model

Load the estimation data.
load iddata1 z1
z1.y = cumsum(z1.y);

Estimate the model.
```

init_sys = idtf([100 1500],[1 10 10 0]);
init sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;
opt = tfestOptions('SearchMethod', 'lm');
sys = tfest(z1,init_sys,opt);

```
sys, an idtf model, has six parameters, four of which are estimated.
Get the factored covariance for the estimated parameters.
```

cov_type = 'factors';
cov_data = getcov(sys,cov_type,'free');

```

\section*{Input Arguments}

\section*{sys - Linear identified parametric model}
idtf, idss, idgrey, idpoly, or idproc object | model array
Linear identified parametric model, specified as an idtf, idss, idgrey, idpoly, or idproc model or an array of such models.

\section*{cov_type - Covariance type}
```

'value' (default)| 'factors'

```

Covariance return type, specified as either 'value' or 'factors'.
- If cov_type is 'value', then cov_data is returned as a matrix (raw covariance).
- If cov_type is ' factors ', then cov_data is returned as a structure containing the factors of the covariance matrix.

Use this option for fetching the covariance data if the covariance matrix contains nonfinite values, is not positive definite, or is ill conditioned. You can calculate the response uncertainty using the covariance factors instead of the numerically disadvantageous covariance matrix.

This option does not offer a numerical advantage in the following cases:
- sys is estimated using certain instrument variable methods, such as iv4.
- You have explicitly specified the parameter covariance of sys using the deprecated CovarianceMatrix model property.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{cov_data - Parameter covariance of sys}
matrix or cell array of matrices | structure or cell array of structures
Parameter covariance of sys, returned as a matrix, cell array of matrices, structure, or cell array of structures.
- If sys is a single model and cov_type is 'value', then cov_data is an \(n p-b y-n p\) matrix. \(n p\) is the number of parameters of sys.

The value of the nonzero elements of this matrix is equal to sys.Report. Parameters.FreeParCovariance when sys is obtained via estimation. The row and column entries that correspond to fixed parameters are zero.
- If sys is a single model and cov_type is 'factors ', then cov_data is a structure with fields:
- R - Usually an upper triangular matrix.
- T-Transformation matrix.
- Free - Logical vector of length \(n p\), indicating if a model parameter is free (estimated) or not. \(n p\) is the number of parameters of sys.

To obtain the covariance matrix using the factored form, enter:
```

Free = cov_factored.Free;
T = cov_factored.T;
R = cov_factored.R;
np = nparams(sys);
cov_matrix = zeros(np);
cov_matrix(Free, Free) = T*inv(R'*R)*T';

```

For numerical accuracy reasons, you can calculate \(T * i n v\left(R{ }^{\prime} * R\right) * T^{\prime}\) as \(X^{*} X^{\prime}\), where \(X=T / R\).
- If sys is a model array, then cov_data is a cell array of size equal to the array size of sys.
cov_data(i, \(j, k, \ldots)\) contains the covariance data for sys(:, : \(, i, j, k, \ldots)\).

\section*{More About}
- "What Is Model Covariance?"
- "Types of Model Uncertainty Information"

\section*{See Also}
getpvec | nparams | rsample | setcov | sim | simsd

\section*{getDelayInfo}

Get input/output delay information for idnlarx model structure

\section*{Syntax}

DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

\section*{Description}

DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each input and output variable of an idnlarx model.

DELAYS = getDelayInfo(MODEL, TYPE) lets you choose between obtaining maximum delays across all input and output variables or maximum delays for each output variable individually. When delays are obtained for each output variable individually a matrix is returned, where each row is a vector containing \(n_{y}+n_{u}\) maximum delays for each output variable, and:
- \(n_{y}\) is the number of outputs of MODEL.
- \(n_{u}\) is the number of inputs of MODEL.

Delay information is useful for determining the number of states in the model. For nonlinear ARX models, the states are related to the set of delayed input and output variables that define the model structure (regressors). For example, if an input or output variable \(p\) has a maximum delay of \(D\) samples, then it contributes \(D\) elements to the state vector:
\(p(t-1), p(t-2), \ldots p(t-D)\)
The number of states of a nonlinear ARX model equals the sum of the maximum delays of each input and output variable. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 1-415

\section*{Input Arguments}
getDelayInfo accepts the following arguments:
- MODEL: idnlarx model.
- TYPE: (Optional) Specifies whether to obtain channel delays 'channelwise' or 'all' as follows:
- 'all': Default value. DELAYS contains the maximum delays across each output (vector of \(n_{y}+n_{u}\) entries, where [ny, nu] = size(MODEL)).
- 'channelwise ': DELAYS contains delay values separated for each output (\(n_{y}\)-by(\(n_{y}+n_{u}\)) matrix).

\section*{Output Arguments}
- DELAYS: Contains delay information in a vector of length \(n_{y}+n_{u}\) arranged with output channels preceding the input channels, i.e., [y1, y2,.., u1, u2,..].

\section*{Examples}

In the following example you create a 2 -output, 3 -input nonlinear ARX model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.
```

M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],...
'linear');

```

2 Compute the maximum delays for each output variable individually.
```

Del = getDelayInfo(M,'channelwise')
Del =

2	0	2	1	0
1	0	1	5	0

```

The matrix Del contains the maximum delays for the first and second output of the model M. You can interpret the contents of matrix Del as follows:
- In the dynamics for the output \(1\left(y_{1}\right)\) of model M , the maximum delays for each input/ output channel are as follows: \(y_{1}: 2, y_{2}: 0, u_{1}: 2, u_{2}: 1, u_{3}: 0\).
- Similarly, in the dynamics for the output \(2\left(y_{2}\right)\) of the model, the maximum delays in channels \(y_{1}, y_{2}, u_{1}, u_{2}, u_{3}\) are \(1,0,1,5\), and 0 respectively.

You can find the maximum delays for all the input and output variables in the order (\(y_{1}\), \(y_{2}, u_{1}, u_{2}, u_{3}\)) by executing the command

Del=getDelayInfo(M, 'all')
which returns
Del =
\(\begin{array}{lllll}2 & 0 & 2 & 5 & 0\end{array}\)

Note: The maximum delay across all output equations can be obtained by executing MaxDel \(=\max (\operatorname{Del},[], 1)\). Since input \(u_{2}\) has 5 delays (the 4th entry in Del, there are 5 terms corresponding to \(u_{5}\) in the state vector \(\left(\left(u_{5}(t-1), \ldots u_{5}(t-5)\right.\right.\). Applying this definition to all I/O channels, the complete state vector for model \(M\) becomes:
\(X(t)=\left[y_{1}(t-1), y_{1}(t-2), u_{1}(t-1), u_{1}(t-2), u_{2}(t-1), u_{2}(t-2), u_{2}(t-3), u_{2}(t-4), u_{2}(t-5)\right]\)

\author{
See Also \\ data2state(idnlarx) | getreg | idnlarx
}

\section*{getexp}

Specific experiments from multiple-experiment data set

\section*{Syntax}
```

d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

```

\section*{Description}
d1 = getexp(data,ExperimentNumber) retrieves specific experiments from multiple-experiment data set. data is an iddata object that contains several experiments. d1 is another iddata object containing the indicated experiment(s). ExperimentNumber is the experiment number as in d1 = getexp(data,3) or d1 = getexp(data,[4 2]).
d1 = getexp(data,ExperimentName) specifies the experiment name as in d1 = getexp(data,'Period1') or d1 = getexp(data, \{'Day1','Day3'\}).

See merge (iddata) and iddata for how to create multiple-experiment data objects.
You can also retrieve the experiments using a fourth subscript, as in \(\mathrm{d} 1=\) data(:,:,:,ExperimentNumber). Type help iddata/subsref for details on this.

\section*{getinit}

Values of idnlgrey model initial states

\section*{Syntax}
```

getinit(model)
getinit(model,prop)

```

\section*{Arguments}

\section*{model}

Name of the idnlgrey model object.

\section*{Property}

Name of the InitialStates model property field, such as 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.

\section*{Description}
getinit(model) gets the initial-state values in the 'Value' field of the InitialStates model property.
getinit (model, prop) gets the initial-state values of the prop field of the InitialStates model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an \(N x\)-by- 1 cell array of values, where \(N x\) is the number of states.
```

See Also
getpar | idnlgrey | setinit| setpar

```

\section*{getoptions}

Return @PlotOptions handle or plot options property

\section*{Syntax}
```

p = getoptions(h)
p = getoptions(h,propertyname)

```

\section*{Description}
\(p=\) getoptions(h) returns the plot options handle associated with plot handle \(h . p\) contains all the settable options for a given response plot.
\(\mathrm{p}=\) getoptions(h, propertyname) returns the specified options property, propertyname, for the plot with handle h. You can use this to interrogate a plot handle. For example,
p = getoptions(h,'Grid')
returns ' on ' if a grid is visible, and 'off' when it is not.
For a list of the properties and values available for each plot type, see "Properties and Values Reference".

\author{
See Also \\ setoptions
}

\section*{idParametric/getpar}

Obtain attributes such as values and bounds of linear model parameters

\section*{Syntax}
```

value = getpar(sys,'value')
free = getpar(sys,'free')
bounds = getpar(sys,'bounds')
label = getpar(sys,'label')
getpar(sys)

```

\section*{Description}
value = getpar(sys, 'value') returns the parameter values of the model sys. If sys is a model array, the returned value is a cell array of size equal to the model array.
free \(=\) getpar(sys,'free') returns the free or fixed status of the parameters.
bounds = getpar(sys,'bounds') returns the minimum and maximum bounds on the parameters.
label \(=\) getpar(sys,'label') returns the labels for the parameters.
getpar(sys) prints a table of parameter values, labels, free status and minimum and maximum bounds.

\section*{Examples}

\section*{Get Parameter Values}

Get the parameter values of an estimated ARMAX model.
Estimate an ARMAX model.
load iddata8;
init_data \(=\) z8(1:100);
```

na=1;
nb=[[$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$];
nc=1;
nk=[0 0 0];
sys = armax(init_data,[na nb nc nk]);

```

Get the parameter values.
```

val = getpar(sys,'value')

```
val =
 \(-0.7511\)
 \(-0.4302\)
 0.4449
 0.0101
 0.3458

To set parameter values, use sys = setpar(sys,'value', value).

\section*{Get Free Parameters and Their Bounds}

Get the free parameters and their bounds for a process model.
Construct a process model, and set its parameter values and free status.
```

m = idproc('P2DUZI');
m.Kp = 1;
m.Tw = 100;
m.Zeta = .3;
m.Tz = 10;
m.Td = 0.4;
m.Structure.Td.Free = 0;

```

Here, the value of Td is fixed.
Get the parameter values.
Val = getpar(m,'Value')

Val =
```

1.0000 100.0000
0.3000
0.4000
10.0000

```

Get the free statuses of the parameters.
```

Free = getpar(m, 'Free')

```

Free =
1
1
1
0
1

The output indicates that Td is a fixed parameter and the remaining parameters are free.
Get the default bounds on the parameters.
MinMax = getpar(m, 'bounds')

MinMax =
- Inf Inf

0 Inf
0 Inf
0 Inf
- Inf Inf

Extract the values of the free parameters.
FreeValues = Val(Free)

FreeValues =
1.0000
100.0000
0.3000
10.0000

Extract the bounds on the free parameters.
```

FreeValBounds = MinMax(Free,:)

```

\section*{FreeValBounds =}
\begin{tabular}{rr}
-Inf & Inf \\
0 & Inf \\
0 & Inf \\
- Inf & Inf
\end{tabular}

\section*{Get Parameter Labels}

Get the parameter labels of an estimated ARMAX model.
Estimate an ARMAX model.
```

load iddata8;

```
init_data = z8(1:100);
na \(=1\);
\(\mathrm{nb}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\);
nc=1;
nk=[00 0 0 ;
sys = armax(init_data,[na nb nc nk]);

Assign parameter labels.
```

sys.Structure.a.Info(2).Label='a2';

```

Get the parameter labels.
```

label = getpar(sys,'label')

```

\section*{label =}
```

    'a2'
    ```
 1.1
1.

\section*{Obtain a Table of Model Parameter Attributes}

Obtain a table of all model parameter attributes of an ARMAX model.
Estimate an ARMAX model.
load iddata8;
init_data = z8(1:100);
na=4;
nb=[3 2 3];
nc=2;
nk=[0 000\(]\);
sys = armax(init_data,[na nb nc nk]);
Get all parameter attributes.
getpar(sys)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Label & Value & Free & Min. & Max. \\
\hline 1. & & -1.4164 & 1 & - Inf & Inf \\
\hline 2. & & 0.46882 & 1 & - Inf & Inf \\
\hline 3. & & 0.24902 & 1 & - Inf & Inf \\
\hline 4. & & -0.10361 & 1 & - Inf & Inf \\
\hline 5. & & -0.13045 & 1 & - Inf & Inf \\
\hline 6. & & 1.1777 & 1 & - Inf & Inf \\
\hline 7. & & 0.43504 & 1 & - Inf & Inf \\
\hline 8. & & 0.97551 & 1 & - Inf & Inf \\
\hline 9. & & 0.038971 & 1 & - Inf & Inf \\
\hline 10. & & -0.17467 & 1 & - Inf & Inf \\
\hline 11. & & 0.17177 & 1 & - Inf & Inf \\
\hline 12. & & 0.47979 & 1 & - Inf & Inf \\
\hline 13. & & -1.8887 & 1 & - Inf & Inf \\
\hline 14. & & 0.97541 & 1 & - Inf & Inf \\
\hline
\end{tabular}

\section*{Input Arguments}

\section*{sys - Identified linear model}
idss | idproc | idgrey | idtf | idpoly | array of model objects

Identified linear model, specified as an idss, idpoly, idgrey, idtf, or idfrd model object or an array of model objects.

\section*{Output Arguments}

\section*{value - Parameter values}
vector of doubles
Parameter values, returned as a double vector of length nparams (sys).

\section*{free - Free or fixed status of parameters}
vector of logical values
Free or fixed status of parameters, returned as a logical vector of length nparams (sys).

\section*{bounds - Minimum and maximum bounds on parameters \\ matrix of doubles}

Minimum and maximum bounds on parameters, returned as a double matrix of size nparams (sys)-by-2. The first column contains the minimum bound, and the second column the maximum bound.

\section*{label - Parameter labels}
cell array of strings
Parameter labels, returned as a cell array of strings of length nparams (sys).
```

See Also
getcov | getpvec | idssdata | polydata | setpar | tfdata

```

\section*{getpar}

Parameter values and properties of idnlgrey model parameters

\section*{Syntax}
```

getpar(model)
getpar(model,prop)

```

\section*{Arguments}

\section*{model}

Name of the idnlgrey model object.

\section*{Property}

Name of the Parameters model property field, such as 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.

Default: 'Value'.

\section*{Description}
getpar(model) gets the model parameter values in the 'Value' field of the Parameters model property.
getpar (model, prop) gets the model parameter values in the prop field of the Parameters model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where \(N p\) is the number of parameters.
```

See Also
getinit | idnlgrey | setinit | setpar | getpvec

```

\section*{getpvec}

Model parameters and associated uncertainty data

\section*{Syntax}
```

pvec = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys,'free')

```

\section*{Description}
pvec = getpvec(sys) returns a vector, pvec, containing the values of all the parameters of the identified model sys.
[pvec,pvec_sd] = getpvec(sys) also returns the 1 standard deviation value of the uncertainty associated with the parameters of sys. If the model covariance information for sys is not available, pvec_sd is [].
[pvec, pvec_sd] = getpvec(sys,'free') returns the values and standard deviation data for only the free parameters of sys.

\section*{Input Arguments}

\section*{sys}

Identified model.

\section*{Output Arguments}

\section*{pvec}

Values of the parameters of sys.
If sys is an array of models, then pvec is a cell array with parameter value vectors corresponding to each model in sys.

\section*{pvec_sd}

1 standard deviation value of the parameters of sys.
If the model covariance information for sys is not available, pvec_sd is [].
If sys is an array of models, then pvec_sd is a cell array with standard deviation vectors corresponding to each model in sys.

\section*{Examples}

Obtain the parameter values for an estimated transfer function.
```

load iddata1 z1;
sys = tfest(z1,3);
pvec = getpvec(sys);

```

Obtain the parameter values and associated 1 standard deviation values for an estimated state-space model.
```

load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys)

```

Obtain the free parameter values and associated 1 standard deviation values for an estimated state-space model.
```

load iddata2 z2;

```
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys,'free')
```

See Also
getcov | idssdata | setpvec | tfdata | zpkdata

```

\section*{getreg}

Regressor expressions and numerical values in nonlinear ARX model

\section*{Syntax}
```

Rs = getreg(model)
Rs = getreg(model,subset)
Rm = getreg(model,subset,data)
Rm = getreg(model,subset,data,init)

```

\section*{Description}

Rs = getreg(model) returns expressions for computing regressors in the nonlinear ARX model. Rs is a cell array of strings. model is an idnlarx object.

Rs = getreg(model, subset) returns regressor expressions for a specified subset of regressors. subset is a string.

Rm = getreg(model, subset, data) returns regressor values as a matrix for a specified subset of regressors.

Rm = getreg(model, subset, data,init) returns regressor values as matrices for a specified subset of regressors. The first N rows of each regressor matrix depend on the initial states init, where N is the maximum delay in the regressors (see getDelayInfo). For multiple-output models, Rm is a cell array of cell arrays.

\section*{Input Arguments}

\section*{data}
iddata object containing measured data.
init
Initial conditions of your data:
- 'z' (default) specifies zero initial state.
- Real column vector containing the initial state values. input and output data values at a time instant before the first sample in data. To create the initial state vector from the input-output data, use the data2state method of the idnlarx class. For multiple-experiment data, this is a matrix where each column specifies the initial state of the model corresponding to that experiment.
- iddata object containing input and output samples at time instants before to the first sample in data. When the iddata object contains more samples than the maximum delay in the model, only the most recent samples are used. The minimum number of samples required is equal to max (getDelayInfo(model)).

\section*{model}
iddata object representing nonlinear ARX model.

\section*{subset}

String that represents a subset of all regressors:
- (Default) ' all' - All regressors.
- 'custom'-Only custom regressors.
- 'input '—Only standard regressors computed from input data.
- 'linear '-Only regressors not used in the nonlinear block.
- 'nonlinear '-Only regressors used in the nonlinear block.

Note: You can use 'nl' as an abbreviation of 'nonlinear'.
- 'output '—Only regressors computed from output data.
- 'standard '-Only standard regressors (excluding any custom regressors).

\section*{Output Arguments}

\section*{Rm}

Matrix of regressor values for all or a specified subset of regressors. Each matrix in Rm contains as many rows as there are data samples. For a model with ny outputs, Rm is an ny-by- 1 cell array of matrices. When data contains multiple experiments, Rm is a cell array where each element corresponds to a matrix of regressor values for an experiment.

Regressor expressions represented as a cell array of strings. For a model with ny outputs, Rs is an ny-by-1 cell array of cell arrays of strings. For example, the expression 'u1(t-2)' computes the regressor by delaying the input signal u1 by two time samples. Similarly, the expression 'y2(t-1) ' computes the regressor by delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in the idnlarx object property model. NonlinearRegressors.

\section*{Examples}

Get regressor expressions and values, and evaluate the predicted model output:
```

% Load sample data u and y:
load twotankdata;
Ts = 0.2; % Sampling interval is 0.2 min
% Create data object:
z = iddata(y,u,Ts);
% Use first 1000 samples for estimation:
ze = z(1:1000);
% Estimate nonlinear ARX model
model = nlarx(ze,[3 2 1]);
% Get regressor expressions:
Rs = getreg(model)
% Get regressor values:
Rm = getreg(model,'all',ze)
% Evaluate model output for one-step-prediction:
Y = evaluate(model.Nonlinearity,Rm)
% The previous result is equivalent to:
Y_p = predict(model,ze,1,'z')

```

\section*{More About}
- "Identifying Nonlinear ARX Models"

\section*{See Also \\ addreg | customreg | evaluate | polyreg}

\section*{getTrend}

Data offset and trend information

\section*{Syntax}
```

T = getTrend(data)
T = getTrend(data,0)
T = getTrend(data,1)

```

\section*{Description}
\(\mathrm{T}=\) getTrend(data) constructs a TrendInfo object to store offset, mean, or linear trend information for detrending or retrending data. You can assign specific offset and slope values to T .
\(\mathrm{T}=\) getTrend (data, 0) computes the means of input and output signals and stores them as InputOffset and OutputOffset properties of T, respectively.
\(\mathrm{T}=\) getTrend(data, 1) computes a best-fit straight line for both input and output signals and stores them as properties of T .

\section*{Examples}

Compute input-output signal means, store them, and detrend the data:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Compute the mean of the data
T = getTrend(data,0)
% Remove the mean from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot

```
```

hold on
plot(data_d)

```

Remove a specific offset from input and output data signals:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

```

\section*{More About}
- "Handling Offsets and Trends in Data"

\author{
See Also \\ detrend | retrend | TrendInfo
}

\section*{goodnessOfFit}

Goodness of fit between test and reference data

\section*{Syntax}
```

fit = goodnessOfFit(x,xref,cost_func)

```

\section*{Description}
fit = goodnessOfFit(x,xref, cost_func) returns the goodness of fit between the data, \(x\), and the reference, xref using a cost function specified by cost_func.

\section*{Input Arguments}

\section*{x}

Test data.
x is an Ns -by- N matrix, where Ns is the number of samples and N is the number of channels.
x can also be a cell array of multiple test data sets.
x must not contain any NaN or Inf values.

\section*{xref}

Reference data.
xref must be of the same size as x .
xref can also be a cell array of multiple reference sets. In this case, each individual reference set must be of the same size as the corresponding test data set.
xref must not contain any NaN or \(\operatorname{Inf}\) values.
cost_func
Cost function to determine goodness of fit.
cost_func must be one of the following strings:
- 'MSE' - Mean square error:
\[
f i t=\frac{\|x-x r e f\|^{2}}{N s}
\]
where, \(N_{s}\) is the number of samples, and \# indicates the 2 -norm of a vector. fit is a scalar value.
- 'NRMSE ' - Normalized root mean square error:
\[
f i t(i)=1-\frac{\|\operatorname{xref}(:, i)-x(:, i)\|}{\|\operatorname{xref}(:, i)-\operatorname{mean}(\operatorname{xref}(:, i))\|}
\]
where, \# indicates the 2 -norm of a vector. fit is a row vector of length N and \(\mathrm{i}=\) \(1, \ldots, N\), where \(N\) is the number of channels.

NRMSE costs vary between - Inf (bad fit) to 1 (perfect fit). If the cost function is equal to zero, then \(x\) is no better than a straight line at matching xref.
- 'NMSE ' - Normalized mean square error:
\[
f i t(i)=1-\left\|\frac{x r e f(:, i)-x(:, i)}{\operatorname{xref}(:, i)-\operatorname{mean}(x r e f(:, i))}\right\|^{2}
\]
where, \# indicates the 2 -norm of a vector. fit is a row vector of length N and \(\mathrm{i}=\) \(1, \ldots, N\), where \(N\) is the number of channels.

NMSE costs vary between - Inf (bad fit) to 1 (perfect fit). If the cost function is equal to zero, then x is no better than a straight line at matching xref.

\section*{Output Arguments}
fit
Goodness of fit between test and reference data.

For a single test data set and reference pair, fit is returned as a:
- Scalar if cost_func is MSE.
- Row vector of length \(N\) if cost_func is NRMSE or NMSE. \(N\) is the number of channels.

If \(x\) and/or xref are cell arrays, then fit is an array containing the goodness of fit values for each test data and reference pair.

\section*{Examples}

\section*{Calculate Goodness of Fit of Between Estimated and Measured Data}

Obtain the measured output.
```

load iddata1 z1
yref = z1.y;

```
z 1 is an iddata object containing measured input/output data. \(\mathrm{z} 1 . \mathrm{y}\) is the measured output.

Obtain the estimated output.
```

sys = tfest(z1,2);
y_sim = sim(sys,z1(:,[],:));

```
sys is a second-order transfer function estimated using the measured input/output data. y is the output estimated using sys and the measured input.

Calculate the goodness of the fit between the measured and estimated outputs.
```

cost_func = 'NRMSE';
y = y_sim.y;
fit = goodnessOfFit(y,yref,cost_func);

```

The goodness of fit is calculated using the normalized root mean square error as the cost function.

Alternatively, you can use "compare" to calculate the goodness of fit:
```

opt = compareOptions('InitialCondition','z');
compare(z1,sys,opt);

```


\section*{See Also}
aic | compare | fpe | pe | resid

\section*{greyest}

Linear grey-box model estimation

\section*{Syntax}
```

sys = greyest(data,init_sys)
sys = greyest(data,init_sys,opt)

```

\section*{Description}
sys = greyest(data, init_sys) estimates a linear grey-box model, sys, using time or frequency domain data, data. The dimensions of the inputs and outputs of data and init_sys, an idgrey model, must match. sys is an identified idgrey model that has the same structure as init_sys.
sys = greyest(data, init_sys,opt) estimates a linear grey-box model using the option set, opt, to configure the estimation options.

\section*{Input Arguments}

\section*{data}

Estimation data.
The dimensions of the inputs and outputs of data and init_sys must match.
For time-domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:
- Recorded frequency response data (frd or idfrd)
- iddata object with its Domain property set to 'Frequency '

\section*{init_sys}

Identified linear grey-box model that configures the initial parameterization of sys.
init_sys, an idgrey model, must have the same input and output dimensions as data.

\section*{opt}

Estimation options.
opt is an option set, created using greyest0ptions, which specifies options including:
- Estimation objective
- Initialization choice
- Disturbance model handling
- Numerical search method to be used in estimation

\section*{Output Arguments}

\section*{sys}

Estimated linear grey-box model.
sys is an idgrey model that encapsulates the estimated linear grey-box model.

\section*{Examples}

\section*{Estimate Grey-Box Model}

Estimate the parameters of a DC motor using the linear grey-box framework.
Load the measured data.
```

load(fullfile(matlabroot, 'toolbox', 'ident', ...
'iddemos', 'data', 'dcmotordata'));
data = iddata(y, u, 0.1, 'Name', 'DC-motor');
data.InputName = 'Voltage';
data.InputUnit = 'V';
data.OutputName = {'Angular position', 'Angular velocity'};
data.OutputUnit = {'rad', 'rad/s'};
data.Tstart = 0;
data.TimeUnit = 's';

```
data is an iddata object containing the measured data for the outputs, the angular position, the angular velocity. It also contains the input, the driving voltage.

Create a grey-box model representing the system dynamics.
For the DC motor, choose the angular position (rad) and the angular velocity (rad/s) as the outputs and the driving voltage (V) as the input. Set up a linear state-space structure of the following form:
\[
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{1}{\tau}
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
\frac{G}{\tau}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x(t)
\end{aligned}
\]
\(\tau\) is the time constant of the motor in seconds, and \(G\) is the static gain from the input to the angular velocity in \(\mathrm{rad} /(\mathrm{V} * \mathrm{~s})\).
\(\mathrm{G}=0.25\);
tau = 1;
init_sys = idgrey('motor',tau,'cd', G, 0);
The governing equations in state-space form are represented in the MATLAB® file motor.m. To view the contents of this file, enter edit motor.m at the MATLAB command prompt.
\(G\) is a known quantity that is provided to motor.m as an optional argument.
\(\tau\) is a free estimation parameter.
init_sys is an idgrey model associated with motor.m.
Estimate \(\tau\).
sys = greyest(data,init_sys);
sys is an idgrey model containing the estimated value of \(\tau\).
To obtain the estimated parameter values associated with sys, use getpvec (sys).
Analyze the result.
```

opt = compareOptions('InitialCondition','zero');
compare(data,sys,Inf,opt)

```

sys provides a \(98.35 \%\) fit for the angular position and an \(84.42 \%\) fit for the angular velocity.

\section*{Estimate Grey-Box Model Using Regularization}

Estimate the parameters of a DC motor by incorporating prior information about the parameters when using regularization constants.

The model is parameterized by static gain G and time constant \(\tau\). From prior knowledge, it is known that G is about 4 and \(\tau\) is about 1 . Also, you have more confidence in the value of \(\tau\) than G and would like to guide the estimation to remain close to the initial guess.

Load estimation data.
load regularizationExampleData.mat motorData
The data contains measurements of motor's angular position and velocity at given input voltages.

Create an idgrey model for DC motor dynamics. Use the function DCMotorODE that represents the structure of the grey-box model.
```

mi = idgrey(@DCMotorODE,{'G', 4; 'Tau', 1},'cd',{}, 0);
mi = setpar(mi, 'label', 'default');

```

If you want to view the DCMotorODE function, type:
type DCMotorODE.m
```

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized
%by gain G and time constant Tau.
%
% [A,B,C,D,K,XO] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
% of the DC-motor with time-constant Tau and static gain G. The sample
% time is Ts.
%
% This file returns continuous-time representation if input argument Ts
% is zero. If Ts>0, a discrete-time representation is returned.
%
% See also IDGREY, GREYEST.
% Copyright 2013 The MathWorks, Inc.
A = [0 1;0 -1/Tau];
B = [0; G/Tau];
C = eye(2);
D = [0;0];
if Ts>0 % Sample the model with sample time Ts
s = expm([[A B]*Ts; zeros(1,3)]);
A = s(1:2,1:2);
B = s(1:2,3);
end

```

Specify regularization options Lambda.
```

opt = greyestOptions;
opt.Regularization.Lambda = 100;

```

Specify regularization options R.
opt.Regularization. \(\mathrm{R}=[1,1000]\);
You specify more weighting on the second parameter because you have more confidence in the value of \(\tau\) than G .

Specify the initial values of the parameters as regularization option \(\theta^{*}\). opt.Regularization.Nominal = 'model';

Estimate the regularized grey-box model.
sys = greyest(motorData, mi, opt);
- "Estimate Model Using Zero/Pole/Gain Parameters"
- "Regularized Estimates of Model Parameters"

\section*{See Also}
greyestOptions | iddata | idfrd | idgrey | idnlgrey | pem | ssest

\section*{greyestOptions}

Option set for greyest

\section*{Syntax}
```

opt = greyestOptions

```
opt = greyestOptions(Name, Value)

\section*{Description}
opt = greyestOptions creates the default options set for greyest.
opt = greyestOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'InitialState'}

Specify how initial states are handled during estimation.
InitialState requires one of the following strings:
- 'model ' - The initial state is parameterized by the ODE file used by the idgrey model. The ODE file must return 6 or more output arguments.
- 'zero' - The initial state is set to zero. Any values returned by the ODE file are ignored.
- 'estimate' - The initial state is treated as an independent estimation parameter.
- 'backcast ' - The initial state is estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial states based on the estimation data.
- Vector of doubles - Specify a column vector of length \(N x\), where \(N x\) is the number of states. For multiexperiment data, specify a matrix with \(N e\) columns, where \(N e\) is the number of experiments. The specified values are treated as fixed values during the estimation process.

Default: 'auto'

\section*{'DisturbanceModel'}

Specify how the disturbance component \((K)\) is handled during estimation.
DisturbanceModel requires one of the following strings:
- 'model' \(-K\) values are parameterized by the ODE file used by the idgrey model. The ODE file must return 5 or more output arguments.
- 'fixed ' - The value of the \(k\) property of the idgrey model is fixed to its original value.
- ' none ' \(-K\) is fixed to zero. Any values returned by the ODE file are ignored.
- 'estimate' \(-K\) is treated as an independent estimation parameter.
- 'auto' - The software chooses the method to handle how the disturbance component is handled during estimation. The software uses the 'model' method if the ODE file returns 5 or more output arguments with a finite value for \(K\). Else, the software uses the 'fixed' method.

Note: Noise model cannot be estimated using frequency domain data.

Default: 'auto'

\section*{'Focus'}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.
- 'prediction' - Same as 'simulation', except that it does not enforce the stability of the resulting model.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus '. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'
'EstCovar' - Control whether to generate parameter covariance data
true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

\section*{'Display ' - Specify whether to display the estimation progress}
'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed
'InputOffset' - Remove offset from time-domain input data during estimation
[] (default) | vector of positive integers
Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{'OutputOffset' - Remove offset from time-domain output data during estimation [] (default) | vector}

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{'OutputWeight'}

Specifies criterion used during minimization.
OutputWeight can have the following values:
- 'noise ' - Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\), where \(E\) represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. This option uses the inverse of the estimated noise variance as the weighting function.
- Positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace \(\left(E^{\prime} * E^{*} W\right)\). \(E\) is the matrix of prediction errors, with one column for each output. \(W\) is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.
- [] - The software chooses between the 'noise ' or using the identity matrix for W.

Default: []

\section*{'Regularization'}

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:
- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

\section*{Default: 0}
- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of np positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

\section*{Default: 1}
- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

\section*{Default: 0}

\section*{'SearchMethod'}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1].
- lm - Uses the Levenberg-Marquardt method.
- lsqnonlin — Uses the trust region reflective algorithm. Requires Optimization Toolbox software.
- grad - The steepest descent gradient search method.
- auto - The algorithm chooses one of the preceding options. The descent direction is calculated using gn, gna, lm, and grad successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{'Search0ption'}

Options set for the search algorithm.

\section*{SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'lm', 'grad', or 'auto'}
\begin{tabular}{|c|c|c|}
\hline Field Name & \multicolumn{2}{|l|}{Description} \\
\hline Toleran & \multicolumn{2}{|l|}{\begin{tabular}{l}
Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value. \\
Default: 0.01
\end{tabular}} \\
\hline MaxIter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance. \\
Setting MaxIter \(=0\) returns the result of the start-up procedure. \\
Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model. \\
Default: 20
\end{tabular}} \\
\hline \multirow[t]{4}{*}{Advance} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Advanced search settings. \\
Specified as a structure with the following fields:
\end{tabular}} \\
\hline & Field Name & Description \\
\hline & GnPinvCon & \begin{tabular}{l}
Singular values of the Jacobian matrix that are smaller than GnPinvConst*max (size (J) *norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'. \\
GnPinvConst must be a positive, real value. \\
Default: 10000
\end{tabular} \\
\hline & InitGnaTo. & Initial value of gamma. Applicable when SearchMethod is 'gna'. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Field & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{9}{*}{} & Field Name & Description \\
\hline & & Default: 0.0001 \\
\hline & LMStartVa. & \begin{tabular}{l}
Starting value of search-direction length \(d\) in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. \\
Default: 0.001
\end{tabular} \\
\hline & LMStep & \begin{tabular}{l}
Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. \\
Default: 2
\end{tabular} \\
\hline & MaxBisect. & \begin{tabular}{l}
Maximum number of bisections used by the line search along the search direction. \\
Default: 25
\end{tabular} \\
\hline & MaxFunEva. & \begin{tabular}{l}
Iterations stop if the number of calls to the model file exceeds this value. \\
MaxFunEvals must be a positive, integer value. \\
Default: Inf
\end{tabular} \\
\hline & MinParCha & \begin{tabular}{l}
Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. \\
Default: 0
\end{tabular} \\
\hline & RelImprov & \begin{tabular}{l}
Iterations stop if the relative improvement of the criterion function is less than RelImprovement. \\
RelImprovement must be a positive, integer value. \\
Default: 0
\end{tabular} \\
\hline & StepReduc & Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & \multicolumn{2}{l|}{ Description } \\
\hline \multirow{4}{|l|}{} & Field Name & Description \\
\cline { 2 - 4 } & \begin{tabular}{l}
either MaxBisections tries are completed or a lower value of \\
the criterion function is obtained. \\
StepReduction must be a positive, real value that is greater \\
than 1. \\
Default: 2
\end{tabular} \\
\hline
\end{tabular}

\section*{SearchOption structure when SearchMethod is specified as 'Isqnonlin'}
\begin{tabular}{|ll|}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & Description \\
\hline TolFun & \begin{tabular}{l}
Termination tolerance on the loss function that the software minimizes to \\
determine the estimated parameter values. \\
The value of TolFun is the same as that of \\
sys.SearchOption. Advanced. TolFun. \\
Default: 1e-5
\end{tabular} \\
\hline TolX & \begin{tabular}{l}
Termination tolerance on the estimated parameter values. \\
\\
\\
\\
The value of TolX is the same as that of \\
sys.SearchOption. Advanced. TolX. \\
Default: 1 e-6
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations during loss-function minimization. The \\
iterations stop when MaxIter is reached or another stopping criterion is \\
satisfied, such as TolFun etc.
\end{tabular} \\
& \begin{tabular}{l}
The value of MaxIter is the same as that of \\
sys.SearchOption. Advanced. MaxIter.
\end{tabular} \\
& Default: 20
\end{tabular}

\section*{Field Description Name}

Advance Options set for lsqnonlin.
For more information, see the Optimization Options table in "Optimization Options".

Use optimset('lsqnonlin') to create an options set for lsqnonlin, and then modify it to specify its various options.

\section*{'Advanced'}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [2].

ErrorThreshold \(=0\) disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

\section*{Default: 0}
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial state.

The initial state is estimated when
\[
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
\]
- \(y_{\text {meas }}\) is the measured output.
- \(y_{p, z}\) is the predicted output of a model estimated using zero initial states.
- \(y_{p, e}\) is the predicted output of a model estimated using estimated initial states.

Applicable when InitialState is 'auto'.
Default: 1.05

\section*{Output Arguments}
opt
Option set containing the specified options for greyest.

\section*{Examples}

\section*{Create Default Options Set for Linear Grey Box Estimation}
opt = greyestOptions;

\section*{Specify Options for Linear Grey Box Estimation}

Create an options set for greyest using the 'backcast ' algorithm to initialize the state. Specify Display as 'on'.
```

opt = greyestOptions('InitialState','backcast','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = greyestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

```

\section*{References}
[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for
Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
```

See Also
greyest | idgrey | idnlgrey | pem | ssest

```

\section*{hasdelay}

True for linear model with time delays

\section*{Syntax}

B = hasdelay(sys)
B = hasdelay(sys,'elem')

\section*{Description}
\(B=\) hasdelay (sys) returns 1 (true) if the model sys has input delays, output delays, I/O delays, or internal delays, and 0 (false) otherwise. If sys is a model array, then \(B\) is true if least one model in sys has delays.
\(B=\) hasdelay(sys,'elem') returns a logical array of the same size as the model array sys. The logical array indicates which models in sys have delays.

\author{
See Also \\ absorbDelay | totaldelay
}

\section*{idarx}

Multiple-output ARX polynomials, impulse response, or step response model

Note: idarx will be removed in a future release. Use idpoly instead.
To convert an existing idarx model, sys_idarx, to an idpoly model, use idpoly(sys_idarx).

\section*{Syntax}
```

m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

```

\section*{Description}
```

m = idarx (A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

```
idarx creates an object containing parameters that describe the general multiple-input, multiple-output model structure of ARX type.
\[
\begin{aligned}
& y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
& B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{aligned}
\]

Here \(A_{k}\) and \(B_{k}\) are matrices of dimensions \(n y\)-by- \(n y\) and \(n y\)-by- \(n u\), respectively. (\(n y\) is the number of outputs, that is, the dimension of the vector \(y(t)\), and \(n u\) is the number of inputs.)

The arguments A and B are 3 - D arrays that contain the A matrices and the B matrices of the model in the following way.
\(A\) is an ny-by-ny-by- \((n a+1)\) array such that:
\(A(:,:, k+1)=A k\)
\(A(:,:, 1)=\operatorname{eye}(n y)\)
Similarly B is an ny-by-nu-by- \((\mathrm{nb}+1)\) array with:
\(B(:,:, k+1)=B k\)
Note that A always starts with the identity matrix, and that delays in the model are defined by setting the corresponding leading entries in \(B\) to zero. For a multivariate time series, take B = [].

The optional property NoiseVariance sets the covariance matrix of the driving noise source \(e(t)\) in the model above. The default value is the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time models (\(\mathrm{Ts}=0\)) are not supported.

The use of idarx is twofold. You can use it to create models that are simulated (using sim) or analyzed (using bode, pzmap, etc.). You can also use it to define initial value models that are further adjusted to data (using arx). The free parameters in the structure are consistent with the structure of \(A\) and \(B\); that is, leading zeros in the rows of \(B\) are regarded as fixed delays, and trailing zeros in \(A\) and \(B\) are regarded as a definition of lower-order polynomials. These zeros are fixed, while all other parameters are free.

For a model with one output, ARX models can be described both as idarx and idpoly models. The internal representation is different, however.

\section*{idarx Properties}
- A, B: The A and B polynomials as 3-D arrays, described above.
- dA, dB: The standard deviations of A and B. Same format as A and B. Cannot be set.
- na, nb, nk: The orders and delays of the model. na is an ny-by-ny matrix whose \(i\) - \(j\) entry is the order of the polynomial corresponding to the \(i\)-j entry of A. Similarly nb is an ny-by-nu matrix with the orders of B. nk is also an ny-by-nu matrix, whose \(i\)-j entry is the delay from input \(j\) to output \(i\), that is, the number of leading zeros in the \(i\) \(j\) entry of B.
- InitialState: This describes how the initial state (initial values in filtering, etc.) should be handled. For time-domain applications, this is typically handled by starting the filtering when all data are available. For frequency-domain data, you
must estimate initial states. The possible values of InitialState are 'zero', 'estimate', and 'auto' (which makes a data-dependent choice between zero and estimate).

You can set and retrieve all properties either with the set and get commands or by subscripts. Autofill applies to all properties and values, and they are case insensitive.

For a complete list of property values, use get (m). To see possible value assignments, use set(m). See also idprops idarx.

\section*{idarx Definition of States}

The states of an idarx model are defined as those corresponding to the model obtained by converting them to the state-space format using the idss command. For example, if you have an idarx model defined by \(\mathrm{m} 1=\operatorname{idarx}(\mathrm{A}, \mathrm{B}, 1)\), then the initial states of this model correspond to those of \(\mathrm{m} 2=\) idss (m1). The concept of states is useful for functions such as sim, predict, compare and findstates.

\section*{Examples}

Simulate a second-order ARX model with one input and two outputs, and then estimate a model using the simulated data.

A = zeros (2,2,3);
\(B=\operatorname{zeros}(2,1,3)\)
\(\mathrm{A}(:,:, 1)=\) eye(2);
\(A(:,:, 2)=[-1.50 .1 ;-0.21 .5] ;\)
\(A(:,:, 3)=[0.7-0.3 ; 0.10 .7] ;\)
\(B(:,:, 2)=[1 ;-1]\);
\(B(:,:, 3)=[0.5 ; 1.2] ;\)
mO = idarx (A,B,1);
u = iddata([],idinput(300));
e = iddata([], randn \((300,2))\);
\(y=\operatorname{sim}(m 0,[u\) e] \()\);
\(\mathrm{m}=\operatorname{arx}([y \mathrm{u}],[[22 ; 22],[2 ; 2],[1 ; 1]])\);

\section*{More About}
- "Using Linear Model for Nonlinear ARX Estimation"

\section*{See Also \\ | arx | arxdata | | idpoly}

\section*{iddata}

Time- or frequency-domain data

\section*{Syntax}
```

data = iddata(y,[],Ts)
data = iddata(y,u,Ts)
data = iddata(y,u,Ts,'Frequency',W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data = iddata(idfrd_object)

```

\section*{Description}
data \(=\) iddata(y,[],Ts) creates an iddata object for time-series data, containing a time-domain output signal y and an empty input signal [], respectively. Ts specifies the sampling interval of the experimental data.
data \(=\) iddata(\(\mathrm{y}, \mathrm{u}, \mathrm{Ts})\) creates an iddata object containing a time-domain output signal \(y\) and input signal \(u\), respectively. Ts specifies the sampling interval of the experimental data.
data = iddata(y,u,Ts,'Frequency',W) creates an iddata object containing a frequency-domain output signal y and input signal \(u\), respectively.Ts specifies the sampling interval of the experimental data. W specifies the iddata property 'frequency' as a vector of frequencies.
data \(=\) iddata(y,u,Ts,'P1',V1,...,'PN',VN) creates an iddata object containing a time-domain or frequency-domain output signal y and input signal \(u\), respectively. Ts specifies the sampling interval of the experimental data.
'P1', V1, ..., 'PN ' , VN are property-value pairs, as described in "Properties" on page 1-345.
data = iddata(idfrd_object) transforms an idfrd object to a frequency-domain iddata object.

\section*{Arguments}

\section*{y}

Name of MATLAB variable that represents the output signal from a system. Sets the OutputData iddata property. For a single-output system, this is a column vector. For a multiple-output system with \(N_{\mathrm{y}}\) output channels and \(N_{\mathrm{T}}\) time samples, this is an \(N_{\mathrm{T}}\)-by- \(N_{\mathrm{y}}\) matrix.

Note: Output data must be in the same domain as input data.
u
Name of MATLAB variable that represents the input signal to a system. Sets the InputData iddata property. For a single-input system, this is a column vector. For a multiple-output system with \(N_{\mathrm{u}}\) output channels and \(N_{\mathrm{T}}\) time samples, this is an \(N_{\mathrm{T}}\)-by- \(N_{\mathrm{u}}\) matrix.

Note: Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds. Default value is 1. For continuous-time data in the frequency domain, set Ts to 0 .
'P1', V1, ...,'PN', VN
Pairs of iddata property names and property values.
idfrd_object
Name of idfrd data object.

\section*{Constructor}

\section*{Requirements for Constructing an iddata Object}

To construct an iddata object, you must have already imported data into the MATLAB workspace, as described in "Time-Domain Data Representation".

\section*{Constructing an iddata Object for Time-Domain Data}

Use the following syntax to create a time-domain iddata object data:
```

data = iddata(y,u,Ts)

```

You can also specify additional properties, as follows:
data = iddata(y,u,Ts,'Property1', Value1, ...,'PropertyN', ValueN)
For more information about accessing object properties, see "Properties" on page 1-345.
Here, Ts is the sampling time, or the time interval, between successive data samples:
- For uniformly sampled data, Ts is a scalar value equal to the sampling interval of your experiment.
- For nonuniformly sampled data, Ts is [], and the value of the SamplingInstants property is a column vector containing individual time values. For example:
```

data = iddata(y,u,[],'SamplingInstants',TimeVector)

```
where TimeVector represents a vector of time values.

Note: You can modify the property SamplingInstants by setting it to a new vector with the length equal to the number of data samples.

The default time unit is seconds, but you can specify any unit string using the TimeUnit property. For more information about iddata time properties, see "Modifying Time and Frequency Vectors".

To represent time-series data, use the following syntax:
```

ts_data = iddata(y,[],Ts)

```
where \(y\) is the output data, [] indicates empty input data, and Ts is the sampling interval.

The following example shows how to create an iddata object using single-input/singleoutput (SISO) data from dryer2. mat. The input and output each contain 1000 samples with the sampling interval of 0.08 second.
```

load dryer2 % Load input u2 and output y2.
data = iddata(y2,u2,0.08) % Create iddata object.

```
```

MATLAB returns the following output:
Time domain data set with }1000\mathrm{ samples.
Sampling interval: 0.08
Outputs Unit (if specified)
y1
Inputs Unit (if specified)
u1

```

The default channel name ' y 1 ' is assigned to the first and only output channel. When y2 contains several channels, the channels are assigned default names 'y1', 'y2', 'y2', ..., 'yn'. Similarly, the default channel name 'u1' is assigned to the first and only input channel. For more information about naming channels, see "Naming, Adding, and Removing Data Channels".

\section*{Constructing an iddata Object for Frequency-Domain Data}

Frequency-domain data is the Fourier transform of the input and output signals at specific frequency values. To represent frequency-domain data, use the following syntax to create the iddata object:
```

data = iddata(y,u,Ts,'Frequency',w)

```
'Frequency ' is an iddata property that specifies the frequency values \(w\), where \(w\) is the frequency column vector that defines the frequencies at which the Fourier transform values of \(y\) and \(u\) are computed. Ts is the time interval between successive data samples in seconds for the original time-domain data. \(w, y\), and \(u\) have the same number of rows.

Note: You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see "Modifying Time and Frequency Vectors".

To specify a continuous-time system, set Ts to 0 .
You can specify additional properties when you create the iddata object, as follows:
```

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

```

For more information about accessing object properties, see "Properties" on page 1-345.

\section*{Properties}

After creating the object, you can use get or dot notation to access the object property values.

Use set or dot notation to set a property of an existing object.
The following table describes iddata object properties and their values. These properties are specified as property-value arguments 'P1', V1, ..., 'PN', VN' in the iddata constructor, or you can set them using the set command or dot notation. In the list below, N denotes the number of data samples in the input and output signals, ny is the number of output channels, nu is the number of input channels, and Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the entire property name. However, the portion you enter must by enough to uniquely identify the property.
\begin{tabular}{|l|l|l|}
\hline Property Name & Description & \begin{tabular}{l}
Value \\
\hline Domain \\
Specifies whether the data is in \\
the time domain or frequency \\
domain.
\end{tabular} \\
\hline ExperimentName & \begin{tabular}{l}
'Frequency ' — Frequency- \\
domain data. \\
'Time ' (Default) — Time- \\
domain data.
\end{tabular} \\
\hline Frequency & \begin{tabular}{l}
Name of each data set \\
contained in the iddata object.
\end{tabular} & \begin{tabular}{l}
For Ne experiments, a 1-by-Ne \\
cell array of strings. Each \\
cell contains the name of the \\
corresponding experiment. \\
Default names are \{'Exp1', \\
'Exp2 ' , . .\}.
\end{tabular} \\
\hline & \begin{tabular}{l}
(Frequency-domain data only) \\
Frequency values for defining \\
the Fourier Transforms of the \\
signals.
\end{tabular} & \begin{tabular}{l}
For a single experiment, this \\
is an N-by-1 vector. For Ne \\
experiments, a 1-by-Ne cell \\
array and each cell contains the \\
frequencies of the corresponding \\
experiment.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Property Name & Description & Value \\
\hline InputData & Name of MATLAB variable that stores the input signal to a system. & For nu input channels and \(N\) data samples, this is an N -by-nu matrix. \\
\hline InputName & Specifies the names of individual input channels. & Cell array of length nu-by-1 contains the name string of each input channel. Default names are \{'u1'; 'u2'; ...\}. \\
\hline InputUnit & Specifies the units of each input channel. & Cell array of length nu-by-1. Each cell contains a string that specifies the units of each input channel. \\
\hline InterSample & Specifies the behavior of the input signals between samples for transformations between discrete-time and continuoustime. & \begin{tabular}{l}
For a single experiment: \\
- zoh- (Default) Zero-order hold maintains a piecewiseconstant input signal between samples. \\
- foh— First-order hold maintains a piecewiselinear input signal between samples. \\
- bl-Band-limited behavior specifies that the continuoustime input signal has zero power above the Nyquist frequency. \\
For Ne experiments, InterSample is an nu-by-Ne cell array. Each cell contains one of these values corresponding to each experiment.
\end{tabular} \\
\hline Name & Name of the data set. & Text string. \\
\hline Notes & Comments about the data set. & Text string. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Property Name & Description & Value \\
\hline OutputData & Name of MATLAB variable that stores the output signal from a system. & For ny output channels and N samples, this is an N -by-ny matrix. \\
\hline OutputName & For a multiple-output system, specifies the names of individual output channels. & Cell array of length ny-by-1 contains the name string of each output channel. Default names are \{'y1';'y2';...\}. \\
\hline OutputUnit & Specifies the units of each output channel. & For ny output channels, a cell array of length ny-by-1. Each cell contains a string that specifies the units of the corresponding output channel. \\
\hline Period & Period of the input signal. & (Default) For a nonperiodic signal, set to inf. For a multiple-input signal, this is an nu-by- 1 vector and the kth entry contains the period of the kth input. For Ne experiments, this is a 1 -by-Ne cell array and each cell contains a scalar or vector of periods for the corresponding experiment. \\
\hline SamplingInstants & (Time-domain data only) The time values in the time vector calculated from the properties Tstart and Ts. & For a single experiment, this is an N -by- 1 vector. For Ne experiments, this is a 1 -by-Ne cell array and each cell contains the sampling instants of the corresponding experiment. \\
\hline TimeUnit & (Time-domain data only) Time unit. & A string that specifies the time unit for the time vector. Specify TimeUnit as one of the following: 'nanoseconds','microsecond (default), 'minutes','hours', 'days', 'weeks', 'months' or 'years'. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Property Name & Description & Value \\
\hline Ts & \begin{tabular}{l}
Time interval between successive data samples in seconds. Must be specified for both time- and frequencydomain data. For frequencydomain, it is used to compute Fourier transforms of the signals as discrete-time Fourier transforms (DTFT) with the indicated sampling interval. \\
Note: Your data must be uniformly sampled.
\end{tabular} & Default value is 1. For continuous-time data in the frequency domain, set to 0 ; the inputs and outputs are interpreted as continuoustime Fourier transforms of the signals. Note that Ts is essential also for frequency-domain data, for proper interpretation of how the Fourier transforms were computed: They are interpreted as discrete-time Fourier transforms (DTFT) with the indicated sampling interval.. For multiple-experiment data, Ts is a 1 -by-Ne cell array and each cell contains the sampling interval of the corresponding experiment. \\
\hline Tstart & (Time-domain data only) Specifies the start time of the time vector. & For a single experiment, this is a scalar. For Ne experiments, Tstart is a 1 -by-Ne cell array and each cell contains the starting time of the corresponding experiment. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Property Name & Description & Value \\
\hline FrequencyUnit & \begin{tabular}{l}
(Frequency-domain data only) \\
Frequency unit.
\end{tabular} & \begin{tabular}{l}
Specifies the units of the frequency vector (see Frequency). Specify as one of the following: 'rad/TimeUnit', \\
cycles/TimeUnit', 'rad/ \\
s', 'Hz','kHz', 'MHz', 'GHz', \\
or 'rpm'. The units 'rad/ TimeUnit' and 'cycles/ TimeUnit' are relative to the time units specified in the TimeUnitproperty. Setting FrequencyUnit does not change the frequency vector. To convert the units and automatically scale frequency points, use chgFreqUnit.
\end{tabular} \\
\hline UserData & Additional comments. & Text string. \\
\hline
\end{tabular}

To view the properties, use the get command. For example:
```

load dryer2 % Load input u2 and output y2
data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data

```

You can specify properties when you create an iddata object using the constructor syntax:
```

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

```

To change property values for an existing iddata object, use the set command or dot notation. For example, to change the sampling interval to 0.05 , type the following at the prompt:
```

set(data,'Ts',0.05)

```
or equivalently:
data.ts \(=0.05\)
Property names are not case sensitive. You do not need to type the entire property name if the first few letters uniquely identify the property.

Tip You can use data.y as an alternative to data. OutputData to access the output values, or use data.u as an alternative to data. InputData to access the input values.

An iddata object containing frequency-domain data includes frequency-specific properties, such as Frequency for the frequency vector and Units for frequency units (instead of Tstart and SamplingIntervals). For example:
```

% Load input u2 and output y2

```
 load dryer2;
\% Create iddata object
 data \(=\) iddata(y2, u2, 0.08) ;
\% Take the Fourier transform of the data
\% transforming it to frequency domain
 data \(=f f t(d a t a)\)
\% Get property values of data
 get(data)

\section*{See Also}
```

advice | detrend | fcat | getexp | idfilt | idfrd | plot | resample | size

```

\section*{iddataPlotOptions}

Options set for iddata/plot

\section*{Syntax}
```

opt = iddataPlotOptions('time')
opt = iddataPlotOptions('frequency')
opt = iddataPlotOptions(

```
\(\qquad\)
``` ,'identpref')
```


Description

opt = iddataPlotOptions('time') creates a default options set for plotting timedomain data. Use these options to customize the data plot.
opt = iddataPlotOptions('frequency') creates a default options set for plotting frequency-domain data.
opt = iddataPlotOptions(\qquad ,'identpref') initializes the plot options with the System Identification Toolbox preferences. This syntax can include any of the input argument combinations in the previous syntaxes.

Examples

Create Options Set for Plotting Time-Domain Data

Create an options set and use it for plotting time-domain data.
Create an options set with default options for time-domain data.

```
opt = iddataPlotOptions('time');
```

Specify plot properties, such as time units and grid. View the plot in minutes

```
opt.TimeUnits = 'minutes';
% Turn grid on
opt.Grid = 'on';
```

Create a plot using the specified options.
load iddata1 z1
h = plot(z1, opt);

Create Options Set for Plotting Frequency-Domain Data

Create an options set and use it for plotting frequency-domain data.
Create an options set with default options for frequency-domain data.

```
opt = iddataPlotOptions('frequency');
```

Specify plot properties, such as phase visibility and frequency units.

```
opt.PhaseVisible = 'off';
opt.FreqUnits = 'Hz';
```

Create a plot with the specified options.

```
load iddata7z7
```

zf = fft(z7);
h = plot(zf, opt);

Initialize a Plot Using Toolbox Preferences

```
opt = iddataPlotOptions('time','identpref');
```


Output Arguments

opt - Options set for iddata/plot

iddataPlotOptions options set

Options set containing the specified options for iddata/plot. The structure has the following fields:

Field	Description
Title, XLabel, YLabel	Axes label and title, specified as a string.
TickLabel	Tick label, specified as a string
Grid	Show or hide the grid Specified as one of the following strings: 'off' \| 'on' Default: 'off'
XlimMode, YlimMode	Limit modes, specified as one of the following strings: - 'auto ' - The axis limits are based on the data plotted - 'manual' - The values explicitly set with Xlim, Ylim Default: 'auto'

Field	Description		
Xlim, Ylim	Axes limits, specified as maximum and minimum values. Default: [0-1].		
IOGrouping	Grouping of input-output pairs Specified as one of the following strings: 'none' \|'inputs'	'output'	'all' Default: 'none'
InputLabels, OutputLabels	Input and output label styles on individual plot axes.		
InputVisible, OutputVisible	Visibility of input and output channels Specified as one of the following strings: 'off' \| 'on' Default: ' on'		

Field	Description
For time-domain data plots only:	
Field	Description
TimeUnits	Time units, specified as one of the following strings: - 'nanoseconds' - 'microseconds' - 'milliseconds' - 'seconds' - 'minutes' - 'hours' - 'days' - 'weeks' - 'months' - 'years' You can also specify 'auto' which uses time units specified in the TimeUnit property of the data. For multiple systems with different time units, the units of the first system is used.
Normalize	Normalize responses. Specified as one of the following strings: 'on' \|'off' Default: 'off'

Field	Description
For frequency-domain data plots only:	
Field	Description
FreqUnits	Frequency units, specified as one of the following strings: - 'Hz' - 'rad/second' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day' - 'cycles/week' - 'cycles/month' - 'cycles/year' Default: 'rad/s'

Field	Description
Field	Description
	You can also specify 'auto ' which uses frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property. For multiple systems with different time units, the units of the first system are used.
FreqScale	Frequency scale, specified as one of the following strings: 'linear' \| 'log' Default: ' log'
MagUnits	Magnitude units, specified as one of the following strings: 'dB' \| 'abs' Default: ' dB'
MagScale	Magnitude scale, specified as one of the following strings: 'linear' \| 'log' Default: 'linear'
MagVisible	Magnitude plot visibility, specified as one of the following strings: 'on' \| 'off' Default: ' on'
MagLowerLimMode	Enables a lower magnitude limit, specified as one of the following strings: 'auto' \| 'manual' Default: 'auto'
MagLowerLim	Lower magnitude limit, specified as a double typically decided by the range of the amplitudes the plotted data takes.
PhaseUnits	Phase units, specified as one of the following strings: 'deg' \| 'rad' Default: ' deg
PhaseVisible	Phase plot visibility, specified as one of the following strings: 'on' \| 'off' Default: ' on '
PhaseWrapping	Enables phase wrapping, specified as one of the following strings: ' on ' \| 'off'

Field	Description
Field	Description
PhaseMatching	Enables phase matching, specified as one of the following strings: ' on ' I 'off ' Default: 'off '
PhaseMatchingFreq	Frequency for matching phase. The value depends on the frequency vector of the plotted data. You pick one of the those values and the plotted match is matched at that value for all plotted datasets.
PhaseMatchingValue	The value to which phase responses are matched closely, specified as a real number representing the desired phase value PhaseMatchingFreq.

See Also

iddata/plot | identpref

identpref

Set System Identification Toolbox preferences

Syntax

identpref

Description

identpref opens a Graphical User Interface (GUI) which allows you to change the System Identification Toolbox preferences. Preferences set in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be automatically reloaded in future MATLAB sessions using the System Identification Toolbox software.

idfilt

Filter data using user-defined passbands, general filters, or Butterworth filters

Syntax

```
Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)
```


Description

Zf = idfilt(Z,filter) filters data using user-defined passbands, general filters, or Butterworth filters. Z is the data, defined as an iddata object. Zf contains the filtered data as an iddata object. The filter can be defined in three ways:

- As an explicit system that defines the filter,

```
filter = idm or filter = {num,den} or filter = {A,B,C,D}
```

idm can be any SISO identified linear model or LTI model object. Alternatively the filter can be defined as a cell array $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ of SISO state-space matrices or as a cell array \{num, den\} of numerator/denominator filter coefficients.

- As a vector or matrix that defines one or several passbands,
filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]
The matrix is n-by-2, where each row defines a passband in rad/s. A filter is constructed that gives the union of these passbands. For time-domain data, it is computed as cascaded Butterworth filters or order NF. The default value of NF is 5 .

For example, to define a stopband between ws1 and ws2, use

```
filter = [0 ws1; ws2,Nyqf]
```

where Nyqf is the Nyquist frequency.

- For frequency-domain data, only the frequency response of the filter can be specified:
filter $=W f$
Here Wf is a vector of possibly complex values that define the filter's frequency response, so that the inputs and outputs at frequency Z. Frequency (kf) are multiplied by Wf (kf). Wf is a column vector of length = number of frequencies in Z . If the data object has several experiments, Wf is a cell array of length $=\#$ of experiments in Z.

Zf = idfilt(Z,filter, causality) specifies causality. For time-domain data, the filtering is carried out in the time domain as causal filtering as default. This corresponds to a last argument causality = 'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is used for the filtering (corresponding to filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency response of the filter. With the filters defined as passband, this gives ideal, zero-phase filtering ("brickwall filters"). Frequencies that have been assigned zero weight by the filter (outside the passband, or via the frequency response) are removed from the iddata object Zf.

Zf = idfilt(Z,filter, 'FilterOrder', NF) specifies the filter order. The time domain filters in the pass-band case are calculated as cascaded Butterworth pass-band and stop-band filters. The orders of these filters are 5 by default, which can be changed to an arbitrary integer NF.

It is common practice in identification to select a frequency band where the fit between model and data is concentrated. Often this corresponds to bandpass filtering with a passband over the interesting breakpoints in a Bode diagram. For identification where a disturbance model is also estimated, it is better to achieve the desired estimation result by using the property 'Focus' than just to prefilter the data. The proper values for 'Focus ' are the same as the argument filter in idfilt.

More About

Algorithms

The Butterworth filter is the same as butter in the Signal Processing Toolbox product. Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

References

Ljung (1999), Chapter 14.

See Also
iddata | resample

idfrd

Frequency-response data or model

Syntax

```
h = idfrd(Response,Freq,Ts)
h =
idfrd(Response, Freq,Ts, 'CovarianceData',Covariance, 'SpectrumData' , Spec, 'Noise0
h = idfrd(Response,Freq,Ts,...
    'P1',V1,'PN',VN)
h = idfrd(mod)
h = idfrd(mod,Freqs)
```


Description

$h=i d f r d(R e s p o n s e, F r e q, T s)$ constructs an idfrd object that stores the frequency response Response of a linear system at frequency values Freq. Ts is the sampling time interval. For a continuous-time system, set Ts=0.
h =
idfrd(Response, Freq, Ts, 'CovarianceData', Covariance, 'SpectrumData' , Spec , 'NoiseC also stores the uncertainty of the response Covariance, the spectrum of the additive disturbance (noise) Spec, and the covariance of the noise Speccov.
h = idfrd(Response,Freq,Ts,...
'P1', V1, 'PN ', VN) constructs an idfrd object that stores a frequency-response model with properties specified by the idfrd model property-value pairs.
h = idfrd(mod) converts a System Identification Toolbox or Control System Toolbox linear model to frequency-response data at default frequencies, including the output noise spectra and their covariance.
h = idfrd(mod,Freqs) converts a System Identification Toolbox or Control System Toolbox linear model to frequency-response data at frequencies Freqs.

For a model

$$
y(t)=G(q) u(t)+H(q) e(t)
$$

stores the transfer function estimate $G\left(e^{i \omega}\right)$, as well as the spectrum of the additive noise $\left(\Phi_{v}\right)$ at the output

$$
\Phi_{v}(\omega)=\lambda T\left|H\left(e^{i \omega T}\right)\right|^{2}
$$

where λ is the estimated variance of $e(t)$, and T is the sampling interval.

Creating idfrd from Given Responses

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being the number of outputs, nu the number of inputs, and Nf the number of frequencies (that is, the length of Freqs). Response ($\mathrm{ky}, \mathrm{ku}, \mathrm{kf}$) is thus the complex-valued frequency response from input ku to output ky at frequency $\omega=$ Freqs ($k f$). When defining the response of a SISO system, Response can be given as a vector.

Freqs is a column vector of length Nf containing the frequencies of the response.
Ts is the sampling interval. Ts $=0$ means a continuous-time model.
Intersample behavior: For discrete-time frequency response data ($\mathrm{T} s>0$), you can also specify the intersample behavior of the input signal that was in effect when the samples were collected originally from an experiment. To specify the intersample behavior, use:

```
mf = idfrd(Response,Freq,Ts,'InterSample','zoh');
```

For multi-input systems, specify the intersample behavior using an $N u$-by- 1 cell array, where $N u$ is the number of inputs. The InterSample property is irrelevant for continuous-time data.

Covariance is a $5-\mathrm{D}$ array containing the covariance of the frequency response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is such that Covariance ($\mathrm{ky}, \mathrm{ku}, \mathrm{kf},:,:$) is the 2 -by-2 covariance matrix of the response Response (ky, ku, kf). The 1-1 element is the variance of the real part, the 2-2 element is the variance of the imaginary part, and the 1-2 and 2-1 elements are the covariance between the real and imaginary parts. squeeze (Covariance (ky, ku, kf, : , :)) thus gives the covariance matrix of the corresponding response.

The format for spectrum information is as follows:
spec is a 3-D array of dimension ny-by-ny-by-Nf, such that $\operatorname{spec}(k y 1, k y 2, k f)$ is the cross spectrum between the noise at output ky1 and the noise at output ky2, at
frequency Freqs (kf). When ky1 = ky2 the (power) spectrum of the noise at output ky1 is thus obtained. For a single-output model, spec can be given as a vector.
speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that speccov (ky1,ky1,kf) is the variance of the corresponding power spectrum.

If only SpectrumData is to be packaged in the idfrd object, set Response = [].

Converting to idfrd

An idfrd object can also be computed from a given linear identified model, mod.
If the frequencies Freqs are not specified, a default choice is made based on the dynamics of the model mod.

Estimated covariance:

- If you obtain mod by identification, the software computes the estimated covariance for the idfrd object from the uncertainty information in mod. The software uses the Gauss approximation formula for this calculation for all model types, except grey-box models. For grey-box models (idgrey), the software applies numerical differentiation. The step sizes for the numerical derivatives are determined by nuderst.
- If you create mod by using commands such as idss, idtf, idproc, idgrey, or idpoly, then the software sets CovarianceData to [].

Delay treatment: If mod contains delays, then the software assigns the delays of the idfrd object, h, as follows:

- h.InputDelay = mod.InputDelay
- h.ioDelay = mod.ioDelay+repmat(mod.OutputDelay,[1, nu])

The expression repmat (mod.OutputDelay, [1, nu]) returns a matrix containing the output delay for each input/output pair.

Frequency responses for submodels can be obtained by the standard subreferencing, $\mathrm{h}=$ idfrd(m(2,3)).h = idfrd(m(:, [])) gives an h that just contains SpectrumData.

The idfrd models can be graphed with bode, spectrum, and nyquist, which accept mixtures of parametric models, such as idtf and idfrd models as arguments. Note that spa, spafdr, and etfe return their estimation results as idfrd objects.

Constructor

The idfrd represents complex frequency-response data. Before you can create an idfrd object, you must import your data as described in "Frequency-Response Data Representation".

Note: The idfrd object can only encapsulate one frequency-response data set. It does not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:
fr_data = idfrd(response,f,Ts)
Suppose that ny is the number of output channels, nu is the number of input channels, and $n \mathrm{f}$ is a vector of frequency values. response is an ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the frequencies of the response.Ts is the sampling time, which is used when measuring or computing the frequency response. If you are working with a continuous-time system, set Ts to 0 .
response(ky,ku,kf), where ky, ku, and kf reference the kth output, input, and frequency value, respectively, is interpreted as the complex-valued frequency response from input ku to output ky at frequency $f(k f)$.

You can specify object properties when you create the idfrd object using the constructor syntax:

```
fr_data = idfrd(response,f,Ts,
    'Property1',Value1,...,'PropertyN',ValueN)
```


Properties

idfrd object properties include:

ResponseData

Frequency response data.
The 'ResponseData' property stores the frequency response data as a 3-D array of complex numbers. For SISO systems, 'ResponseData' is a vector of frequency response
values at the frequency points specified in the 'Frequency ' property. For MIMO systems with Nu inputs and Ny outputs, 'ResponseData' is an array of size [Ny Nu Nw], where Nw is the number of frequency points.

Frequency

Frequency points of the frequency response data. Specify Frequency values in the units specified by the FrequencyUnit property.

FrequencyUnit

Frequency units of the model.
FrequencyUnit is a string that specifies the units of the frequency vector in the Frequency property. Set FrequencyUnit to one of the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFreqUnit to convert between frequency units without modifying system behavior.

Default: 'rad/TimeUnit'

SpectrumData

Power spectra and cross spectra of the system output disturbances (noise). Specify SpectrumData as a 3-D array of complex numbers.

Specify SpectrumData as a 3-D array with dimension ny-by-ny-by-Nf. Here, ny is the number of outputs and $N f$ is the number of frequency points.

SpectrumData (ky1,ky2,kf) is the cross spectrum between the noise at output ky1 and the noise at output ky2, at frequency Freqs (kf). When ky1 = ky2 the (power) spectrum of the noise at output ky1 is thus obtained.

For a single-output model, specify SpectrumData as a vector.

CovarianceData

Response data covariance matrices.
Specify CovarianceData as a 5-D array with dimension ny-by-nu-by-Nf-by-2-by-2. Here, ny, nu, and Nf are the number of outputs, inputs and frequency points, respectively. CovarianceData(ky, ku, kf, : ,:) is the 2 -by- 2 covariance matrix of the response data ResponseData (ky, ku, kf). The 1-1 element is the variance of the real part, the 2-2 element is the variance of the imaginary part, and the 1-2 and 2-1 elements are the covariance between the real and imaginary parts.

```
squeeze(Covariance(ky,ku,kf,:,:))
```


NoiseCovariance

Power spectra variance.
Specify NoiseCovariance as a 3-D array with dimension ny-by-ny-by-Nf. Here, ny is the number of outputs and Nf is the number of frequency points. NoiseCovariance (ky1, ky1,kf) is the variance of the corresponding power spectrum. To eliminate the influence of the noise component from the model, specify NoiseVariance as 0 . Zero variance makes the predicted output the same as the simulated output.

Report

Information about the estimation process.
Report contains the following fields:

- Status: Whether model was obtained by construction, estimated, or modified after estimation.
- Method: Name of estimation method used.
- WindowSize: If the model was estimated by spa, spafdr, or etfe, the size of window (input argument M, the resolution parameter) that was used. This is scalar or a vector.
- DataUsed: Attributes of data used for estimation, such as name, sampling time, and intersample behavior.

InterSample

Input intersample behavior.
Specifies the behavior of the input signals between samples for transformations between discrete-time and continuous-time. This property is meaningful for discrete-time idfrd models only.

Set InterSample to one of the following:

- 'zoh' - The input signal used for construction/estimation of the frequency response data was subject to a zero-order-hold filter.
- 'foh ' - The input signal was subject to a first-order-hold filter.
- 'bl' - The input signal has no power above the Nyquist frequency (pi/sys.Ts rad/ s). This is typically the case when the input signal is measured experimentally using an anti-aliasing filter and a sampler. Ideally, treat the data as continuous-time. That is, if the signals used for the estimation of the frequency response were subject to anti-aliasing filters, set sys. Ts to zero.

For multi-input data, specify InterSample as an $N u$-by- 1 cell array, where $N u$ is the number of inputs.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array. Each entry of this array is a numerical value that represents the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

OutputDelay

Output delays.
For identified systems, like idfrd, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: 1

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to
\{'measurements(1)';'measurements(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];
```

creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.
Default: ' '
Notes
Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:

```
nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)
```

where sys is an array containing three identified models obtained at rpms 1000,5000 and 10000 , respectively.

Default: []

To view the properties of the idfrd object, you can use the get command. The following example shows how to create an idfrd object that contains 100 frequency-response values with a sampling time interval of 0.08 s and get its properties:

```
% Create the idfrd data object
    fr data = idfrd(response,f,0.08)
% Get property values of data
    get(fr_data)
```

response and f are variables in the MATLAB Workspace browser, representing the frequency-response data and frequency values, respectively.

To change property values for an existing idfrd object, use the set command or dot notation. For example, to change the name of the idfrd object, type the following command sequence at the prompt:

```
% Set the name of the f_data object
    set(fr_data,'name','D\overline{C}_Converter')
%Get fr_data properties and values
    get(fr_data)
```

If you import fr_data into the System Identification app, this data has the name DC_Converter in the app, and not the variable name fr_data.

Subreferencing

The different channels of the idfrd are retrieved by subreferencing.

```
h(outputs,inputs)
```

$h(2,3)$ thus contains the response data from input channel 3 to output channel 2, and, if applicable, the output spectrum data for output channel 2 . The channels can also be referred to by their names, as in $h(' p o w e r ',\{' v o l t a g e ', ~ ' s p e e d '\}) . ~$

Horizontal Concatenation

Adding input channels,
$h=[h 1, h 2, \ldots, h N]$
creates an idfrd model h, with ResponseData containing all the input channels in $\mathrm{h} 1, \ldots, \mathrm{hN}$. The output channels of hk must be the same, as well as the frequency vectors. SpectrumData is ignored.

Vertical Concatenation

Adding output channels,
h = [h1;h2;... ;hN]
creates an idfrd model h with ResponseData containing all the output channels in h 1 , h2, ..., hN. The input channels of hk must all be the same, as well as the frequency vectors. SpectrumData is also appended for the new outputs. The cross spectrum between output channels of h1, h2, .., hN is then set to zero.

Converting to iddata

You can convert an idfrd object to a frequency-domain iddata object by

```
Data = iddata(Idfrdmodel)
```

See iddata.

Examples

Compare the results from spectral analysis and an ARMAX model.

```
load iddata1 z1;
m = armax(z1,[2 2 2 1]);
g = spa(z1)
g = spafdr(z1,[],{1e-3,10})
bode(g,m)
```


See Also

bode | etfe | freqresp | nyquist | spa | spafdr | tfest

idgrey

Linear ODE (grey-box model) with identifiable parameters

Syntax

```
sys = idgrey(odefun,parameters,fcn_type)
sys = idgrey(odefun,parameters,fcn_type,optional_args)
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)
sys = idgrey(odefun, parameters,fcn_type,optional_args,Ts,Name,Value)
```


Description

sys = idgrey(odefun, parameters,fcn_type) creates a linear grey-box model with identifiable parameters, sys. odefun specifies the user-defined function that relates the model parameters, parameters, to its state-space representation.
sys = idgrey(odefun, parameters,fcn_type,optional_args) creates a linear grey-box model with identifiable parameters using the optional arguments required by odefun.
sys = idgrey(odefun, parameters,fcn_type,optional_args,Ts) creates a linear grey-box model with identifiable parameters with the specified sample time, Ts.
sys = idgrey(odefun, parameters,fcn_type,optional_args, Ts,Name, Value) creates a linear grey-box model with identifiable parameters with additional options specified by one or more Name, Value pair arguments.

Object Description

An idgrey model represents a system as a continuous-time or discrete-time state-space model with identifiable (estimable) coefficients.

A state-space model of a system with input vector, u, output vector, y, and disturbance, e, takes the following form in continuous time:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

In discrete time, the state-space model takes the form:

$$
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+K e[k] \\
& y[k]=C x[k]+D u[k]+e[k]
\end{aligned}
$$

For idgrey models, the state-space matrices A, B, C, and D are expressed as a function of user-defined parameters using a MATLAB function. You access estimated parameters using sys. Structures. Parameters, where sys is an idgrey model.

Use an idgrey model when you know the system of equations governing the system dynamics explicitly. You should be able to express these dynamics in the form of ordinary differential or difference equations. You specify complex relationships and constraints among the parameters that cannot be done through structured state-space models (idss).

You can create an idgrey model using the idgrey command. To do so, write a MATLAB function that returns the A, B, C, and D matrices for given values of the estimable parameters and sampling time. The MATLAB function can also return the K matrix and accept optional input arguments. The matrices returned may represent a continuoustime or discrete-time model, as indicated by the sampling time.

Use the estimating functions pem or greyest to obtain estimated values for the unknown parameters of an idgrey model.

You can convert an idgrey model into other dynamic systems, such as idpoly, idss, tf, ss etc. You cannot convert a dynamic system into an idgrey model.

Examples

Create Grey-Box Model with Estimable Parameters

Create an idgrey model to represent a DC motor. Specify the motor time-constant as an estimable parameter and that the ODE function can return continuous- or discrete-time state-space matrices.

Create the idgrey model.

```
odefun = 'motor';
parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts);
```

sys is an idgrey model that is configured to use the shipped file motor.m to return the A, B, C, D, and K matrices. motor. m also returns the initial conditions, $X 0$. The motor constant, τ, is defined in motor. m as an estimable parameter, and parameters $=1$ specifies its initial value as 1 .

You can use pem or greyest to refine the estimate for τ.

Configure Estimable Parameter of Grey-Box Model

Specify the known parameters of a grey-box model as fixed for estimation. Also specify a minimum bound for an estimable parameter.

Create an ODE file that relates the pendulum model coefficients to its state-space representation.

```
function [A,B,C,D] = LinearPendulum(m,g,l,b,Ts)
A = [0 1; -g/l, -b/m/l^2];
B = zeros(2,0);
C = [1 0];
D = zeros(1,0);
end
```

Save this function as LinearPendulum.m such that it is in the MATLAB search path.
In this function:

- m is the pendulum mass.
- g is the gravitational acceleration.
- l is the pendulum length.
- b is the viscous friction coefficient.
- Ts is the model sampling period.

Create a linear grey-box model associated with the ODE function.

```
odefun = 'LinearPendulum';
m = 1;
g = 9.81;
l = 1;
b = 0.2;
parameters = {'mass', m; 'gravity', g; 'length', l; 'friction', b}
fcn_type = 'c';
sys = idgrey(odefun,parameters,fcn_type);
sys has four parameters.
```

Specify the known parameters, m, g, and l, as fixed for estimation.
sys.Structure.Parameters(1).Free = false;
sys.Structure.Parameters(2).Free = false;
sys.Structure.Parameters(3).Free = false;
m, g, and l are the first three parameters of sys.
Specify a zero lower bound for b, the fourth parameter of sys.
sys.Structure.Parameters(4).Minimum = 0;
Similarly, to specify an upper bound for an estimable parameter, use the Maximum field of the parameter.

Specify Additional Attributes of Grey-Box Model

Create a grey-box model with identifiable parameters. Name the input and output channels of the model, and specify seconds for the model time units.

Use Name, Value pair arguments to specify additional model properties on model creation.

```
odefun = 'motor';
parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts,'InputName','Voltage',...
    'OutputName', {'Angular Position','Angular Velocity'});
```

To change or specify more attributes of an existing model, you can use dot notation. For example:

```
sys.TimeUnit = 'seconds';
```


Create Array of Grey-Box Models

Use the stack command to create an array of linear grey-box models.

```
odefun1 = @motor;
parameters1 = [1 2];
fcn_type = 'cd';
optional_args1 = 1;
sys1 = idgrey(odefun1,parameters1,fcn_type,optional_args1);
odefun2 = 'motor';
parameters2 = {[1 2]};
optional_args2 = 0.5;
sys2 = id
sysarr = stack(1,sys1,sys2);
stack creates a 2-by-1 array of idgrey models, sysarr.
- "Estimating Coefficients of ODEs to Fit Given Solution"
- "Estimate Model Using Zero/Pole/Gain Parameters"
```


Input Arguments

odefun

MATLAB function that relates the model parameters to its state-space representation.
odefun specifies, as a string, the name of a MATLAB function (.m, .p, a function handle or .mex* file). This function establishes the relationship between the model parameters, parameters, and its state-space representation. The function may optionally relate the model parameters to the disturbance matrix and initial states.

If the function is not on the MATLAB path, then specify the full file name, including the path.

The syntax for odefun must be as follows:

```
[A,B,C,D] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,...)
```

The function outputs describe the model in the following linear state-space innovations form:

$$
\begin{aligned}
x n(t) & =A x(t)+B u(t)+K e(t) ; x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

In discrete time $x n(t)=x(t+T s)$ and in continuous time, $x n(t)=\dot{x}(t)$.
par1, par2, .. ., parN are model parameters. Each entry may be a scalar, vector or matrix.

Ts is the sample time.
optional_arg1,optional_arg2, ... are the optional inputs that odefun may require. The values of the optional input arguments are unchanged through the estimation process. However, the values of par1, par2, . . , parN are updated during estimation to fit the data. Use optional input arguments to vary the constants and coefficients used by your model without editing odefun.

The disturbance matrix, K, and the initial state values, $x 0$, are not parametrized. Instead, these values are determined separately, using the DisturbanceModel and InitialState estimation options, respectively. For more information regarding the estimation options, see greyestOptions.

A good choice for achieving the best simulation results is to set the DisturbanceModel option to ' none ', which fixes K to zero.
(Optional) Parameterizing Disturbance: odefun can also return the disturbance component, K, using the syntax:

```
[A,B,C,D,K] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,...)
```

If odefun returns a value for K that contains NaN values, then the estimating function assumes that K is not parameterized. In this case, the value of the DisturbanceModel estimation option determines how K is handled.
(Optional) Parameterizing Initial State Values: To make the model initial states, XO, dependent on the model parameters, use the following syntax for odefun:

```
[A,B,C,D,K,X0] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,...)
```

If odefun returns a value for $X 0$ that contains $N a N$ values, then the estimating function assumes that $X 0$ is not parameterized. In this case, $X 0$ may be fixed to zero or estimated separately, using the InitialStates estimation option.

parameters

Initial values of the parameters required by odefun.
Specify parameters as a cell array containing the parameter initial values. If your model requires only one parameter, which may itself be a vector or a matrix, you may specify parameters as a matrix.

You may also specify parameter names using an N-by- 2 cell array, where N is the number of parameters. The first column specifies the names, and the second column specifies the values of the parameters.

For example:

```
parameters = {'mass',par1;'stiffness',par2;'damping',par3}
```


fen_type

Indicates whether the model is parameterized in continuous-time, discrete-time, or both.
fcn_type requires one of the following strings:

- ' c ' - odefun returns matrices corresponding to a continuous-time system, regardless of the value of Ts.
- 'd ' - odefun returns matrices corresponding to a discrete-time system, whose values may or may not depend on the value of Ts.
- 'cd ' - odefun returns matrices corresponding to a continuous-time system, if Ts=0.

Otherwise, if Ts>0, odefun returns matrices corresponding to a discrete-time system. Select this option to sample your model using the values returned by odefun, rather than using the software's internal sample time conversion routines.

optional_args

Optional input arguments required by odefun.

Specify optional_args as a cell array.
If odefun does not require optional input arguments, specify optional_args as \{\}.

Ts

Model sampling time.
If Ts is unspecified, it is assumed to be:

- - 1 - If fcn_type is ' d ' or 'cd'.

Ts $=-1$ indicates a discrete-time model with unknown sampling time.

- 0 - If fcn_type is ' c '.

Ts $=0$ indicates a continuous-time model.

Name, Value

Specify optional comma-separated pairs of Name,Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name,Value arguments to specify additional properties of idgrey models during model creation. For example, idgrey (odefun, parameters, fcn_type, 'InputName', 'Voltage') creates an idgrey model with the InputName property set to Voltage.

Properties

idgrey object properties include:
a, b, c, d
Values of state-space matrices.

- a - State matrix A, an $N x$-by- $N x$ matrix, as returned by the ODE function associated with the idgrey model. $N x$ is the number of states.
- b - Input-to-state matrix B, an $N x$-by- $N u$ matrix, as returned by the ODE function associated with the idgrey model. $N u$ is the number of inputs and $N x$ is the number of states.
- c - State-to-output matrix C, an $N y$-by- $N x$ matrix, as returned by the ODE function associated with the idgrey model. $N x$ is the number of states and $N y$ is the number of outputs.
- d - Feedthrough matrix D, an $N y$-by- $N u$ matrix, as returned by the ODE function associated with the idgrey model. $N y$ is the number of outputs and $N u$ is the number of inputs.

The values $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are returned by the ODE function associated with the idgrey model. Thus, you can only read these matrices; you cannot set their values.

k

Value of state disturbance matrix, K
k is $N x$-by- $N y$ matrix, where $N x$ is the number of states and $N y$ is the number of outputs.

- If odefun parameterizes the K matrix, then k has the value returned by odefun. odefun parameterizes the K matrix if it returns at least five outputs and the value of the fifth output does not contain NaN values.
- If odefun does not parameterize the K matrix, then k is a zero matrix of size $N x$ -by- $N y . N x$ is the number of states and $N y$ is the number of outputs. The value is treated as a fixed value of the K matrix during estimation. To make the value estimable, use the DisturbanceModel estimation option.
- Regardless of whether the K matrix is parameterized by odefun or not, you can set the value of the k property explicitly as an $N x$-by- $N y$ matrix. $N x$ is the number of states and $N y$ is the number of outputs. The specified value is treated as a fixed value of the K matrix during estimation. To make the value estimable, use the DisturbanceModel estimation option.

To create an estimation option set for idgrey models, use greyestOptions.

StateName

State names. For first-order models, set StateName to a string. For models with two or more states, set StateName to a cell array of strings. Use an empty string ' ' for unnamed states.

Default: Empty string ' ' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is expressed in. For first-order models, set StateUnit to a string. For models with two or more states, set StateUnit to a cell array of strings. StateUnit has no effect on system behavior.

Default: Empty string ' ' for all states

Structure

Information about the estimable parameters of the idgrey model.
Structure stores information regarding the MATLAB function that parameterizes the idgrey model.

- Strucutre. Function - Name or function handle of the MATLAB function used to create the idgrey model.
- Structure.FcnType - Indicates whether the model is parameterized in continuoustime, discrete-time, or both.
- Structure. Parameters - Information about the estimated parameters. Structure.Parameters contains the following fields:
- Value - Parameter values. For example, sys.Structure.Parameters(2).Value contains the initial or estimated values of the second parameter.

NaN represents unknown parameter values.

- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.Parameters(1).Minimum $=0$ constrains the first parameter to be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean value specifying whether the parameter is estimable. If you want to fix the value of a parameter during estimation, set Free $=$ false for the corresponding entry.
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

- Structure. ExtraArgs - Optional input arguments required by the ODE function.
- Structure.StateName - Names of the model states.
- Structure.StateUnit - Units of the model states.

NoiseVariance

The variance (covariance matrix) of the model innovations, e.
An identified model includes a white, Gaussian noise component, $e(t)$. NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as greyest or pem) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a $N y$-by- $N y$ matrix, where $N y$ is the number of outputs in the system.

Report

Information about the estimation process.
Report contains the following fields:

- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- InitialState - Initial state handling during model estimation.
- DisturbanceModel - Disturbance component (the K matrix) handling of the model during estimation.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and their covariance
- OptionsUsed - Options used during estimation (see greyestOptions).
- RandState - Random number stream state at the start of estimation.
- DataUsed - Attributes of the data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value and stopping criterion.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

OutputDelay

Output delays.
For identified systems, like idgrey, OutputDelay is fixed to zero.

Ts

Sampling time.
For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model.
For idgrey models, there is no unique default value for Ts. Ts depends on the value of fcn_type.

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to \{'measurements(1)';'measurements(2)'\}.

When you estimate a model using an iddata object, data, the software automatically sets OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.InputGroup.measurement = [35];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ' '

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:

```
nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)
```

where sys is an array containing three identified models obtained at rpms 1000,5000 and 10000 , respectively.

Default: []

More About

- "Specifying the Linear Grey-Box Model Structure"

```
See Also
getpvec | greyest | greyestOptions | idnlgrey | idss | pem | setpvec | ssest
```


idinput

Generate input signals

Syntax

```
u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)
```


Description

$\mathrm{u}=$ idinput(N) generates input signals which are typically used for identification. N determines the number of generated input data. U is returned as a matrix or column vector:

- If N is a scalar, u is a column vector with this number of rows.
- $N=[N \mathrm{nu}]$ gives an input with nu input channels each of length N.
- $N=[P$ nu M] gives a periodic input with nu channels, each of length M*P and periodic with period P.

Default is $n u=1$ and $M=1$.
It is recommended that you create an iddata object from u, indicating sampling time, input names, periodicity, and so on:
$\mathrm{u}=$ iddata([], u$)$;
$u=$ idinput (N, type, band, levels) specifies the type of input signal to be generated. This argument takes one of the following values:

- 'rgs ' - Gives a random, Gaussian signal.
- 'rbs ' - Gives a random, binary signal. This is the default.
- 'prbs' - Gives a pseudorandom, binary signal.
- 'sine ' - Gives a signal that is a sum of sinusoids. The sinusoids are chosen from the frequency grid freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P intersected with
pi*[band(1) band(2)]. For multi-input signals, the different inputs use different frequencies from this grid. An integer number of full periods is always delivered. The selected frequencies are obtained as [u,freqs] = idinput(....), where row ku of freqs contains the frequencies of input number ku.

The frequency contents of the signal is determined by the argument band. For the choices type = 'rs', 'rbs', and 'sine', this argument is a row vector with two entries

```
band = [wlow, whigh]
```

that determine the lower and upper bound of the passband. The frequencies wlow and whigh are expressed in fractions of the Nyquist frequency. A white noise character input is thus obtained for band $=\left[\begin{array}{ll}0 & 1\end{array}\right]$, which is also the default value.

For the choice type = 'prbs',
band $=[0, B]$
where B is such that the signal is constant over intervals of length $1 / B$ (the clock period). In this case the default is band $=\left[\begin{array}{ll}0 & 1\end{array}\right]$.

The argument levels defines the input level. It is a row vector
levels = [minu, maxu]
such that the signal u will always be between the values minu and maxu for the choices type = 'rbs','prbs', and 'sine'. For type = 'rgs', the signal level is such that minu is the mean value of the signal, minus one standard deviation, while maxu is the mean value plus one standard deviation. Gaussian white noise with zero mean and variance one is thus obtained for levels $=[-1,1]$, which is also the default value.
[u,freqs] = idinput(N,'sine',band,levels, sinedata) specifies sine wave as the generated signal where sinedata= [No_of_Sinusoids, No_of_Trials, Grid_Skip], meaning that No_of_Sinusoids are equally spread over the indicated band, trying No_of_Trials different, random, relative phases, until the lowest amplitude signal is found. Default value of sindedata is $[10,10,1]$.

Some PRBS Aspects

If more than one period is demanded (that is, $M>1$), the length of the data sequence and the period of the PRBS signal are adjusted so that an integer number of maximum
length PRBS periods is always obtained. If $M=1$, the period of the PRBS signal is chosen to that it is longer than $P=N$. In the multiple-input case, the signals are maximally shifted. This means P / nu is an upper bound for the model orders that can be estimated with such a signal.

Some Sine Aspects

In the 'sine' case, the sinusoids are chosen from the frequency grid
freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P
intersected with pi*[band(1) band(2)]. For Grid_Skip, see below. For multipleinput signals, the different inputs use different frequencies from this grid. An integer number of full periods is always delivered. The selected frequencies are obtained as the second output argument, freqs, where row ku of freqs contains the frequencies of input number ku. The resulting signal is affected by a fifth input argument, sinedata

```
sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]
```

meaning that No_of_Sinusoids is equally spread over the indicated band. No_of_Trials (different, random, relative phases) are tried until the lowest amplitude signal is found.

Default: sinedata $=[10,10,1]$;
Grid_Skip can be useful for controlling odd and even frequency multiples, for example, to detect nonlinearities of various kinds.

Examples

Create an input consisting of five sinusoids spread over the whole frequency interval. Compare the spectrum of this signal with that of its square. The frequency splitting (the square having spectral support at other frequencies) reveals the nonlinearity involved:

```
u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
spectrum(etfe(u),'r*',etfe(u2),'+')
```


More About

Algorithms

Very simple algorithms are used. The frequency contents are achieved for 'rgs' by an eighth-order Butterworth, noncausal filter, using idfilt. The same filter is used for the 'rbs' case, before making the signal binary. This means that the frequency contents are not guaranteed to be precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread over the chosen grid, and each sinusoid is given a random phase. A number of trials are made, and the phases that give the smallest signal amplitude are selected. The amplitude is then scaled so as to satisfy the specifications of levels.

References

See Söderström and Stoica (1989), Chapter C5.3. For a general discussion of input signals, see Ljung (1999), Section 13.3.

idmodel

Superclass for linear models

Note: idmodel has been removed. See idgrey, idpoly, idproc, idss or idtf instead.

idnlarx

Nonlinear ARX model

Syntax

```
m = idnlarx([na nb nk])
m = idnlarx([na nb nk],Nonlinearity)
m = idnlarx([na nb nk],Nonlinearity,'Name',Value)
m = idnlarx(LinModel)
m = idnlarx(LinModel,Nonlinearity)
m = idnlarx(LinModel,Nonlinearity,'PropertyName',PropertyValue)
```


Description

Represents nonlinear ARX model. The nonlinear ARX structure is an extension of the linear ARX structure and contains linear and nonlinear functions. For more information, see "Nonlinear ARX Model Extends the Linear ARX Structure".

Typically, you use the nlarx command to both construct the idnlarx object and estimate the model parameters. You can configure the model properties directly in the nlarx syntax.

You can also use the idnlarx constructor to create the nonlinear ARX model structure and then estimate the parameters of this model using nlarx or pem.

For idnlarx object properties, see:

- "idnlarx Model Properties" on page 1-402
- "idnlarx Algorithm Properties" on page 1-408

Construction

$m=$ idnlarx([na nb nk]) creates an idnlarx object using a default wavelet network as its nonlinearity estimator. $n a, n b$, and $n k$ are positive integers that specify model orders and delays.
$m=$ idnlarx([na nb nk],Nonlinearity) specifies a nonlinearity estimator Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
$m=$ idnlarx([na nb nk],Nonlinearity,'Name', Value) creates the object using options specified as idnlarx model property or idnlarx algorithm property name and value pairs. Specify Name inside single quotes.
$m=$ idnlarx(LinModel) creates an idnlarx object using a linear model (in place of [na nb $n k$]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly). LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of m, and the polynomials initialize the linear function of the nonlinearity estimator.
$m=$ idnlarx(LinModel,Nonlinearity) specifies a nonlinearity estimator Nonlinearity.
m = idnlarx(LinModel,Nonlinearity,'PropertyName',PropertyValue) creates the object using options specified as idnlarx property name and value pairs.

Input Arguments

na nb nk

Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose i-jth entry gives the number of delayed j th outputs used to compute the i th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

Default:

Nonlinearity

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.

```
    'wavenet' or wavenet object Wavelet network
(default)
'sigmoidnet' or sigmoidnet object Sigmoid network
'treepartition' or treepartition object Binary-tree
```

```
'linear' or [ ] or linear object
neuralnet object
customnet object
```


Linear function

Neural network
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

LinModel

Discrete time input-output polynomial model of ARX structure (idpoly), typically estimated using the arx command.

Default:

idnlarx Model Properties

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% Get the model time unit
get(m,'TimeUnit')
% Get value of Nonlinearity property
m.Nonlinearity
```

You can specify property name-value pairs in the model estimator or constructor to configure the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.
The following table summarizes idnlarx model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).

Property Name	Description
Algorithm	A structure that specifies the estimation algorithm options, as described in "idnlarx Algorithm Properties" on page 1-408.

Property Name	Description
CustomRegressors	Custom expression in terms of standard regressors. Assignable values: - Cell array of strings. For example: $\left\{' y 1(t-3) \wedge 3 ', ' y 2(t-1) * u 1(t-3) ', ' \sin (u 3(t-2))^{\prime}\right\} .$ - Object array of customreg objects. Create these objects using commands such as customreg and polyreg. For more information, see the corresponding reference pages.

Property Name	Description	
EstimationInfo	A read-only structure that stores estimation settings and results. The structure has the following fields:	
	Field Name	Description
	Status	Shows whether the model parameters were estimated.
	Method	Shows the estimation method.
	LossFen	Value of the loss function, equal to $\operatorname{det}\left(E^{\prime *} E / N\right)$, where E is the residual error matrix (one column for each output) and N is the total number of samples.
	FPE	Value of Akaike's Final Prediction Error (see fpe).
	DataName	Name of the data from which the model is estimated.
	DataLength	Length of the estimation data.
	DataTs	Sampling interval of the estimation data.
	DataDomain	'Time' means time domain data. 'Frequency' is not supported.
	DataInterSample	Intersample behavior of the input estimation data used for interpolation: - 'zoh' means zero-order-hold, or piecewise constant. - 'foh' means first-order-hold, or piecewise linear.
	EstimationTime	Duration of the estimation.
	InitRandState	Random number generator settings at the last randomization of the model parameters using init. init specifies the value of

Property Name	Description	
	Field Name	Description
		InitRandState as the output of executing rng.
	Iterations	Number of iterations performed by the estimation algorithm.
	UpdateNorm	Norm of the Gauss-Newton in the last iteration. Empty when 'lsqnonlin' is the search method.
	LastImprovement	Criterion improvement in the last iteration, shown in \%. Empty when 'lsqnonlin' is the search method.
	Warning	Any warnings encountered during parameter estimation.
	WhyStop	Reason for terminating parameter estimation iterations.

Property Name	Description		
Focus	Specifies 'Prediction' or 'Simulation'. Assignable values: - 'Prediction' (default) — The estimation algorithm minimizes $\\|y-\hat{y}\\|$, where \hat{y} is the 1 -step ahead predicted output. This algorithm does not necessarily minimize the simulation error. - 'Simulation ' - The estimation algorithm minimizes the simulation error and optimizes the results of compare(data, model, Inf). That is, when computing \hat{y}, y in the regressors in F are replaced by values simulated from the input only. 'Simulation' requires that the model include only differentiable nonlinearities.		
	Note: If your model includes the treepartition or neuralnet nonlinearity, the algorithm always uses 'prediction', regardless of the Focus value. If your model includes the wavenet nonlinearity, the first estimation of this model uses 'prediction'.		

Property Name	Description
NonlinearRegressors	Specifies which standard or custom regressors enter the nonlinear block. For multiple-output models, use cell array of n_{y} elements ($n_{y}=$ number of model outputs). For each output, assignable values are: - 'all' - All regressors enter the nonlinear block. - 'search' - Specifies that the estimation algorithm searches for the best regressor combination. This is useful when you want to reduce a large number of regressors entering the nonlinear function block or the nonlinearity estimator. - 'input ' - Input regressors only. - 'output ' - Output regressors only. - 'standard ' - Standard regressors only. - 'custom' - Custom regressors only. - ' [] ' - No regressors enter the nonlinear block. - A vector of indices: Specifies the indices of the regressors that should be used in the nonlinear estimator. To determine the order of regressors, use getreg.
Nonlinearity	Nonlinearity estimator object. Assignable values include wavenet (default), sigmoidnet, treepartition, customnet, neuralnet, and linear. If the model contains only one regressor, you can also use saturation, deadzone, pwlinear, or poly1d. For ny outputs, Nonlinearity is an ny-by-1 array. For example, [sigmoidnet; wavenet] for a two-output model. When you specify a scalar object, this nonlinearity applies to all outputs.
na nb nk	Nonlinear ARX model orders and input delays, where na is the number of output terms, nb is the number of input terms, and nk is the delay from input to output in terms of the number of samples. For ny outputs and nu inputs, na is an ny-by-ny matrix whose i-jth entry gives the number of delayed j th outputs used to compute the i th output. nb and nk are ny-by-nu matrices.

idnlarx Algorithm Properties

The following table summarizes the fields of the Algorithm idnlarx model properties. Algorithm is a structure that specifies the estimation-algorithm options.

Property Name	Description	
Advanced	A structure that specifies additional estimation algorithm options. The structure has the following fields:	
	Field Name	Description
	GnPinvConst	When the search direction is computed, the algorithm discards the singular values of the Jacobian that are smaller than GnPinvConst*max (size(J)) *norm(J)*eps. Singular values that are closer to 0 are included when GnPinvConst is decreased. Default: 1e4. Assign a positive, real value.
	LMStartValue	(For Levenberg-Marquardt search algorithm) The starting level of regularization when using the Levenberg-Marquardt search method (Algorithm.SearchMethod='lm'). Default: 0.001. Assign a positive real value.
	LMStep	(For Levenberg-Marquardt search algorithm) Try this next level of regularization to get a lower value of the criterion function. The level of regularization is LMStep times the previous level. At the start of a new iteration, the level of regularization is computed as 1 /LMStep times the value from the previous iteration. Default: 10. Assign a real value >1.
	MaxBisections	Maximum number of bisections performed by the line search algorithm along the search direction (number of rotations of search vector for ' 1 m '). Used by 'gn',

Property Name	Description	
	Field Name	Description
		'lm', 'gna' and 'grad' search methods (Algorithm.SearchMethod property) Default: 10. Assign a positive integer value.
	MaxFunEvals	The iterations are stopped if the number of calls to the model file exceeds this value. Default: Inf. Assign a positive integer value.
	MinParChange	The smallest parameter update allowed per iteration. Default: 1e-16. Assign a positive, real value.
	RelImprovement	The iterations are stopped if the relative improvement of the criterion function is less than RelImprovement. Default: 0 . Assign a positive real value.
		Note: Does not apply to Algorithm. SearchMethod='lsqnonlin'
	StepReduction	(For line search algorithm) The suggested parameter update is reduced by the factor 'StepReduction' after each try until either 'MaxBisections' tries are completed or a lower value of the criterion function is obtained. Default: 2. Assign a positive, real value >1.
		Note: Does not apply to Algorithm. SearchMethod='lsqnonlin'

Property Name	Description
Criterion	The search method of lsqnonlin supports the Trace criterion only. Use for multiple-output models only. Criterion can have the following values: - 'Det': Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. - 'Trace ': Minimize the trace of the weighted prediction error matrix trace ($E^{\prime} * E^{*} W$), where E is the matrix of prediction errors, with one column for each output, and W is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace ($E^{\prime} * E$), or the traditional least-squares criterion). You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property. If the model contains neuralnet or treepartition as one of its nonlinearity estimators, weighting is not applied because estimations are independent for each output. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. Det can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion. If you want to achieve better accuracy for a particular channel in MIMO models, use Trace with weighting that favors that channel. Otherwise, use Det. If you use Det, check cond (model. NoiseVariance) after estimation. If the matrix is ill-conditioned, try using the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

$\left.\begin{array}{|l|l|}\hline \text { Property Name } & \text { Description } \\ \hline \text { Display } & \begin{array}{l}\text { Toggles displaying or hiding estimation progress information in the } \\ \text { MATLAB Command Window. } \\ \text { Default: 'Off '. } \\ \text { Assignable values: }\end{array} \\ \hline \text { It ' Off ' — Hide estimation information. } \\ \text { - 'On ' — Display estimation information. }\end{array}\right\}$

Property Name	Description
Regularization	Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters". Structure with the following fields: - Lambda - Constant that determines the bias versus variance tradeoff.
\quadSpecify a positive scalar to add the regularization term to the estimation cost.	
\quadThe default value of zero implies no regularization.	
\quadDefault: 0 R — Weighting matrix.	
Specify a vector of nonnegative numbers or a square positive semi- definite matrix. The length must be equal to the number of free	
parameters of the model.	

Property Name	Description
SearchMethod	Method used by the iterative search algorithm. Assignable values: - 'Auto' - Automatically chooses from the following methods. - 'gn' - Subspace Gauss-Newton method. - 'gna' - Adaptive Gauss-Newton method. - 'grad' - A gradient method. - ' lm' - Levenberg-Marquardt method. - 'lsqnonlin' - Nonlinear least-squares method (requires the Optimization Toolbox product). This method only handles the 'Trace ' criterion.
Tolerance	Specifies to terminate the iterative search when the expected improvement of the parameter values is less than Tolerance, specified as a positive real value in $\%$. Default: 0.01.
Weighting	(For multiple-output models only) Specifies the relative importance of outputs in MIMO models (or reliability of corresponding data) as a positive semi-definite matrix W. Use when Criterion = 'Trace' for weighted trace minimization. By default, Weighting is an identity matrix of size equal to the number of outputs.

Examples

Create nonlinear ARX model structure with (default) wavelet network nonlinearity:

```
m = idnlarx([2 2 1]) % na=nb=2 and nk=1
```

Create nonlinear ARX model structure with sigmoid network nonlinearity:

```
m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15
```

Create nonlinear ARX model structure with no nonlinear function in nonlinearity estimator:

```
m=idnlarx([2 2 1],[])
```

Construct a nonlinear ARX model using a linear ARX model:

```
% Construct a linear ARX model.
A = [1 -1.2 0.5];
B = [0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);
% Construct nonlinear ARX model using the linear ARX model.
m1 = idnlarx(LinearModel)
```


More About

Nonlinear ARX Model Structure

This block diagram represents the structure of a nonlinear ARX model in a simulation scenario:

The nonlinear ARX model computes the output y in two stages:
1 Computes regressors from the current and past input values and past output data.
In the simplest case, regressors are delayed inputs and outputs, such as $u(t-1)$ and $y(t-3)$-called standard regressors. You can also specify custom regressors, which are nonlinear functions of delayed inputs and outputs. For example, $\tan (u(t-1))$ or $u(t-1)^{*} y(t-3)$.

By default, all regressors are inputs to both the linear and the nonlinear function blocks of the nonlinearity estimator. You can choose a subset of regressors as inputs to the nonlinear function block.
2 The nonlinearity estimator block maps the regressors to the model output using a combination of nonlinear and linear functions. You can select from available
nonlinearity estimators, such as tree-partition networks, wavelet networks, and multi-layer neural networks. You can also exclude either the linear or the nonlinear function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear blocks in parallel. For example:

$$
F(x)=L^{T}(x-r)+d+g(Q(x-r))
$$

x is a vector of the regressors. $L^{T}(x)+d$ is the output of the linear function block and is affine when $\mathrm{d} \neq 0 . d$ is a scalar offset. $g(Q(x-r))$ represents the output of the nonlinear function block. r is the mean of the regressors x. Q is a projection matrix that makes the calculations well conditioned. The exact form of $F(x)$ depends on your choice of the nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter values, such as L, r, d, Q, and other parameters specifying g. Resulting models are idnlarx objects that store all model data, including model regressors and parameters of the nonlinearity estimator. See the idnlarx reference page for more information.

Definition of idnlarx States

The states of an idnlarx object are delayed input and output variables that define the structure of the model. This toolbox requires states for simulation and prediction using sim(idnlarx), predict, and compare. States are also necessary for linearization of nonlinear ARX models using linearize.

This toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.

The states of an idnlarx model are defined by the maximum delay in each input and output variable used by the regressors. If a variable p has a maximum delay of D samples, then it contributes D elements to the state vector at time $t: p(t-1), p(t-2), \ldots$, $p(t-D)$.

For example, if you have a single-input, single-output idnlarx model:
m = idnlarx([2 3 0],'wavenet', ...

> 'CustomRegressors', \ldots
> $\{' y 1(t-10) * u 1(t-1)$ '\});

This model has these regressors:

```
getreg(m)
```

Regressors:
y1(t-1)
y1(t-2)
u1(t)
u1(t-1)
u1(t-2)
$y 1(t-10) * u 1(t-1)$
The regressors show that the maximum delay in the output variable y1 is 10 samples and the maximum delay in the input $u 1$ is 2 samples. Thus, this model has a total of 12 states:
$X(t)=[y 1(t-1), y 2(t-2), \ldots, y 1(t-10), u 1(t-1), u 1(t-2)]$

Note: The state vector includes the output variables first, followed by input variables.

As another example, consider the 2 -output and 3 -input model:

```
m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0], ...
    [wavenet; linear])
```

getreg lists these regressors:

```
getreg(m)
```

Regressors:
For output 1:
y1(t-1)
y1(t-2)
u1(t-1)
u1(t-2)
u2(t)
u2(t-1)
u3(t)
For output 2:
y1(t-1)
u1(t-1)
u2(t-1)

```
u2(t-2)
u2(t-3)
u2(t-4)
u2(t-5)
```

The maximum delay in output variable y1 is 2 samples, which occurs in regressor set for output 1 . The maximum delays in the three input variables are 2,5 , and 0 , respectively. Thus, the state vector is:

```
X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1),
    u2(t-2), u2(t-3), u2(t-4), u2(t-5)]
```

Variables y2 and u3 do not contribute to the state vector because the maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use getDelayInfo, which returns the maximum delays in all I/O variables across all model outputs. For the multiple-input multiple-output model m, getDelayInfo returns:

```
maxDel = getDelayInfo(m)
maxDel =
    2 0 2 5 0
```

maxDel contains the maximum delays for all input and output variables in the order (y 1 , $\mathrm{y} 2, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3)$. The total number of model states is sum (maxDel) $=9$.

The set of states for an idnlarx model are not required to be minimal.

- "Identifying Nonlinear ARX Models"
- "Using Linear Model for Nonlinear ARX Estimation"

See Also

addreg | customnet | linearize | wavenet | customreg | findop(idnlarx) | getreg | idnlmodel| linear | nlarx | pem | polyreg | sigmoidnet

Tutorials

- ""
-""

idnlgrey

Nonlinear ODE (grey-box model) with unknown parameters

Syntax

```
m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1,..., PN,VN)
```


Description

idnlgrey is an object that represents the nonlinear grey-box model.
For information about the nonlinear grey-box models, see "Estimating Nonlinear GreyBox Models".

The information in these reference pages summarizes the idnlgrey model constructor and properties. It discusses the following topics:

- "idnlgrey Constructor" on page 1-418
- "idnlgrey Properties" on page 1-419
- "idnlgrey Algorithm Properties" on page 1-422
- "idnlgrey Advanced Algorithm Properties" on page 1-427
- "idnlgrey Simulation Options" on page 1-428
- "idnlgrey Gradient Options" on page 1-431
- "idnlgrey EstimationInfo Properties" on page 1-432

idnlgrey Constructor

After you create the function or MEX-file with your model structure, you must define an idnlgrey object.

Use the following syntax to define the idnlgrey model object:

```
m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1, ...,PN,VN)
```

The idnlgrey arguments are defined as follows:

- 'filename ' - Name of the function or MEX-file storing the model structure (ODE file).
- Order - Vector with three entries [Ny Nu Nx], specifying the number of model outputs Ny , the number of inputs Nu , and the number of states Nx .
- Parameters - Parameters, specified as struct arrays, cell arrays, or double arrays.
- InitialStates - Specified in a same way as parameters. Must be fourth input to the idnlgrey constructor.
- The command

```
m = idnlgrey('filename',Order,Parameters,...
    InitialStates,Ts,P1,V1, ...,PN,VN)
specifies idnlgrey property-value pairs. See information on properties of idnlgrey
objects below.
```

Estimate the unknown parameters and initial states of this object using pem. The inputoutput dimensions of the data must be compatible with the input and output orders you specified for the idnlgrey model. You can pass additional property-value pairs to pem to specify the properties of the model or estimation algorithm, such as MaxIter and Tolerance.

idnlgrey Properties

After creating the object, you can use get or dot notation to access the object property values.

You can include property-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm properties.

Use set or dot notation to set a property of an existing object.

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% Get the model time unit
get(m,'TimeUnit')
m.TimeUnit
```

The following table summarizes idnlgrey model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference pages).

Property Name	Description
Algorithm	A structure that specifies the estimation algorithm options, as described in "idnlgrey Algorithm Properties" on page 1-422.
CovarianceMatrix	Covariance matrix of the estimated Parameters. Assignable values: - 'None ' to omit computing uncertainties and save time during parameter estimation. - 'Estimate ' to estimation covariance. Symmetric and positive N_{p}-by- N_{p} matrix (or []) where N_{p} is the number of free model parameters.
EstimationInfo	A read-only structure that stores estimation settings and results, as described in "idnlgrey EstimationInfo Properties" on page 1-432.
FileArgument	Contains auxiliary variables passed to the ODE file (function or MEX-file) specified in FileName. These variables may be used as extra inputs for specifying the state and/or output equations. FileArgument should be specified as a cell array. Default: \{\}.
FileName	File name string (without extension) or a function handle for computing the states and the outputs. If 'FileName ' is a string, then it must point to a MATLAB file, P-code file or MEX-file. For more information about the file variables, see "Specifying the Nonlinear Grey-Box Model Structure".
InitialStates	An $N x$-by- 1 structure array with fields as follows. Here, $N x$ is the number of states of the model. - Name: Name of the state (a string). Default value is 'x\#i' ', where $\# i$ is an integer in [1, Nx].

Property Name	Description
	Unit: Unit of the state (a string). Default value is Value: Initial value of the initial state(s). Assignable values are: - A finite real scalar - A finite real 1-by-Ne vector, where Ne is the number of experiments in the data set to be used for estimation - Minimum: Minimum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Minimum <= Value for all components. Default value: -Inf(size(Value)). - Maximum: Maximum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Value <= Maximum for all components. Default value: Inf(size(Value)). - Fixed: Specifies which component(s) of the initial state(s) are fixed to their known values. Must be a Boolean scalar/1-by-Ne vector of the same size as Value. Default value: true(size(Value)) (that is, do not estimate the initial states). For an idnlgrey model M, the ith initial state is accessed through M.InitialStates(i) and its subfields as M.InitialStates(i).FIELDNAME.
Order	Structure with following fields: - ny - Number of outputs of the model structure. - nu - Number of inputs of the model structure. - nx - Number of states of the model structure. For time series, nu is 0 . For static model structures, nx is 0 .

Property Name	Description
Parameters	Np-by-1 structure array with information about the model parameters containing the following fields: - Name: Name of the parameter (a string). Default value is ' p \#i', where \#i is an integer in [1, Np]. - Unit: Unit of the parameter (a string). Default value is ' '. - Value: Initial value of the parameter(s). Assignable values are: - A finite real scalar - A finite real column vector - A 2 -dimensional real matrix - Minimum: Minimum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Minimum <= Value for all components. Default value: -Inf(size(Value)). - Maximum: Maximum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Value <= Maximum for all components. Default value: Inf(size(Value)). - Fixed: Specifies which component(s) of the parameter(s) are fixed to their known values. Must be a Boolean scalar/ column vector/matrix of the same size as Value. Default value: false(size(Value)), (estimate all parameter components). For an idnlgrey model M, the ith parameter is accessed through M. Parameters(i) and its subfields as M. Parameters(i). FIELDNAME.

idnlgrey Algorithm Properties

The following table summarizes the fields of the Algorithm idnlgrey model properties. Algorithm is a structure that specifies the estimation-algorithm options.

Property Name	Description
Advanced	A structure that specifies additional estimation algorithm options, as described in "idnlgrey Advanced Algorithm Properties" on page 1-427.
Criterion	Specifies criterion used during minimization. Criterion can have the following values: - 'Det': Minimize $\operatorname{det}\left(E^{\prime *} \mathrm{E}\right)$ where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. 'Trace ': Minimize the trace of the weighted prediction error matrix trace ($E^{\prime} * E * W$), where E is the matrix of prediction errors, with one column for each output, and W is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (E'*E), or the traditional least-sum-of-squarederrors criterion. You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property.
Display	Toggles displaying or hiding estimation progress information in the MATLAB Command Window. Default: 'Off'. Assignable values: - 'Off' - Hide estimation information. - 'On ' — Display estimation information.
GradientOptions	A structure that specifies the options related to calculation of gradient of the cost, "idnlgrey Gradient Options" on page 1-431.

Property Name	Description
LimitError	Robustification criterion that limits the influence of large residuals, specified as a positive real value. Residual values that are larger than 'LimitError' times the estimated residual standard deviation have a linear cost instead of the usual quadratic cost. Default: 0 (no robustification).
MaxIter	Maximum number of iterations for the estimation algorithm, specified as a positive integer. Default: 20.

Property Name	Description
Regularization	Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters". Structure with the following fields: - Lambda - Constant that determines the bias versus variance tradeoff. Specify a positive scalar to add the regularization term to the estimation cost. The default value of zero implies no regularization. Default: 0 - R - Weighting matrix. Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model. For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter. The default value of 1 implies a value of eye (npfree), where npfree is the number of free parameters. Default: 1 - Nominal - The nominal value towards which the free parameters are pulled during estimation. The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Property Name	Description
	Default: 0
SearchMethod	Method used by the iterative search algorithm. Assignable values: - 'Auto' - Automatically chooses from the following methods. - 'gn' - Gauss-Newton method. - 'gna' - Adaptive Gauss-Newton method. - 'grad' - A gradient method. - ' $1 m^{\prime}$ - Levenberg-Marquardt method. - 'lsqnonlin' - Nonlinear least-squares method (requires the Optimization Toolbox product). This method handles only the 'Trace' criterion.
SimulationOptions	A structure that specifies the simulation method and related options, as described in "idnlgrey Simulation Options" on page 1-428.
Tolerance	Specifies to terminate the iterative search when the expected improvement of the parameter values is less than Tolerance, specified as a positive real value in $\%$. Default: 0.01.
Weighting	Positive semi-definite matrix W used for weighted trace minimization. When Criterion = 'Trace', trace(E'*E*W) is minimized. Weighting can be used to specify relative importance of outputs in multiple-input multiple-output models (or reliability of corresponding data) when W is a diagonal matrix of nonnegative values. Weighting is not useful in single-output models. By default, Weighting is an identity matrix of size equal to the number of outputs.

Note: The Criterion property setting is meaningful in multiple-output cases only. In single-output models, the two criteria are equivalent. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. The Det criterion can be interpreted as estimating the covariance
matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in multiple-input multiple-output models, you should use Trace with weighting that favors that channel. Otherwise it is natural to use Det. When using Det you can check cond (model. NoiseVariance) after estimation. If the matrix is ill-conditioned, it may be more robust to use the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.

idnlgrey Advanced Algorithm Properties

The following table summarizes the fields of the Algorithm. Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.

Property Name	Description
GnPinvConst	When the search direction is computed, the algorithm discards the singular values of the Jacobian that are smaller than GnPinvConst*max (size (J)) *norm (J) *eps. Singular values that are closer to 0 are included when GnPinvConst is decreased. Default: 1e4. Assign a positive, real value.
LMStartValue	(For Levenberg-Marquardt search algorithm) The starting level of regularization when using the Levenberg-Marquardt search method (Algorithm. SearchMethod= ' lm '). Default: 0.001. Assign a positive real value.
LMStep	(For Levenberg-Marquardt search algorithm) Try this next level of regularization to get a lower value of the criterion function. The level of regularization is LMStep times the previous level. At the start of a new iteration, the level of regularization is computed as 1/LMStep times the value from the previous iteration. Default: 10.

Property Name	Description
	Assign a real value >1.
MaxBisections	Maximum number of bisections performed by the line search algorithm along the search direction (number of rotations of search vector for 'lm'). Used by 'gn', 'lm ', 'gna' and 'grad ' search methods (Algorithm. SearchMethod property) Default: 25. Assign a positive integer value.
MaxFunEvals	The iterations are stopped if the number of calls to the model file exceeds this value. Default: Inf. Assign a positive integer value.
MinParChange	The smallest parameter update allowed per iteration. Default: 1e-16. Assign a positive, real value.
RelImprovement	The iterations are stopped if the relative improvement of the criterion function is less than RelImprovement. Default: 0. Assign a positive real value.
StepReduction	Note: Does not apply to Algorithm. SearchMethod= ' lsqnonlin'
(For line search algorithm) The suggested parameter update is reduced by the factor 'StepReduction ' after each try until either 'MaxBisections' tries are completed or a lower value of the criterion function is obtained. Default: 2. Assign a positive, real value >1.	

idnlgrey Simulation Options

The following table summarizes the fields of Algorithm.SimulationOptions model properties.

Property Name	Description
AbsTol	Absolute error tolerance. This scalar applies to all components of the state vector. AbsTol applies only to the variable step solvers. Default: 1e-6. Assignable value: A positive real value.
FixedStep	(For fixed-step time-continuous solvers) Step size used by the solver. Default: 'Auto ' Assignable values:
- 'Auto ' - Automatically chooses the initial step.	
- A real value such that 0<FixedStep<=1.	

Property Name	Description
RelTol	(For variable-step time-continuous solvers) Relative error tolerance that applies to all components of the state vector. The estimated error in each integration step satisfies $\|\mathrm{e}(\mathrm{i})\|<=$ max(RelTol*abs(x(i)), AbsTol(i)). Default: 1e-3 (0.1\% accuracy). Assignable value: A positive real value.
Solver	ODE (Ordinary Differential/Difference Equation) solver for solving state space equations. A. Variable-step solvers for time-continuous idnlgrey models: - ' ode45' — Runge-Kutta $(4,5)$ solver for nonstiff problems. - ' ode23 ' - Runge-Kutta $(2,3)$ solver for nonstiff problems. - 'ode113' - Adams-Bashforth-Moulton solver for nonstiff problems. - 'ode15s' — Numerical Differential Formula solver for stiff problems. - 'ode23s ' - Modified Rosenbrock solver for stiff problems. - 'ode23t' - Trapezoidal solver for moderately stiff problems. - ' ode23tb ' - Implicit Runge-Kutta solver for stiff problems. B. Fixed-step solvers for time-continuous idnlgrey models: - 'ode5' - Dormand-Prince solver. - 'ode4' - Fourth-order Runge-Kutta solver. - 'ode3' - Bogacki-Shampine solver. - 'ode2 ' - Heun or improved Euler solver. - 'ode1' - Euler solver. C. Fixed-step solvers for time-discrete idnlgrey models: 'FixedStepDiscrete' D. General: 'Auto ' - Automatically chooses one of the previous solvers (default).

idnlgrey Gradient Options

The following table summarizes the fields of the Algorithm.GradientOptions model properties. Algorithm is a structure that specifies the estimation-algorithm options.

Property Name	Description
DiffMaxChange	Largest allowed parameter perturbation when computing numerical derivatives. Default: Inf. Assignable value: A positive real value > 'DiffMinChange '.
DiffMinChange	Smallest allowed parameter perturbation when computing numerical derivatives. Default: 0.01*sqrt (eps). Assignable value: A positive real value <'DiffMaxChange '.
DiffScheme	Method for computing numerical derivatives with respect to the components of the parameters and/or the initial state(s) to form the Jacobian. Default: 'Auto' Assignable values: - 'Auto' - Automatically chooses from the following methods. - 'Central approximation' - 'Forward approximation' - 'Backward approximation'
GradientType	Method used when computing derivatives (Jacobian) of the parameters or the initial states to be estimated. Default: 'Auto'. Assignable values: - 'Auto' - Automatically chooses from the following methods. - 'Basic' - Individually computes all numerical derivatives required to form each column of the Jacobian. - 'Refined ' - Simultaneously computes all numerical derivatives required to form each column of the Jacobian.

idnlgrey EstimationInfo Properties

The following table summarizes the fields of the EstimationInfo model properties. The read-only fields of the EstimationInfo structure store estimation settings and results.

Property Name	Description
Status	Shows whether the model parameters were estimated.
Method	Names of the solver and the optimizer used during estimation.
LossFen	Value of the loss function, equal to $\operatorname{det}\left(E^{\prime *} E / N\right)$, where E is the residual error matrix (one column for each output) and N is the total number of samples. Provides a quantitative description of the model quality.
FPE	Value of Akaike's Final Prediction Error (see fpe).
DataName	Name of the data from which the model is estimated.
DataLength	Length of the estimation data.
DataTs	Sampling interval of the estimation data.
DataDomain	'Time ' means time domain data. 'Frequency ' is not supported.
DataInterSample	Intersample behavior of the input estimation data used for interpolation: - 'zoh ' means zero-order-hold, or piecewise constant. - 'foh ' means first-order-hold, or piecewise linear.
EstimationTime	Duration of the estimation.
InitialGuess	Structure with the fields InitialStates and Parameters, specifying the values of these quantities before the last estimation.
Iterations	Number of iterations performed by the estimation algorithm.
LastImprovement	Criterion improvement in the last iteration, shown in \%. Empty when SearchMethod='lsqnonlin' is the search method.
UpdateNorm	Norm of the search vector (Gauss-Newton vector) at the last iteration. Empty when 'lsqnonlin' is the search method.
Warning	Any warnings encountered during parameter estimation.
WhyStop	Reason for terminating parameter estimation iterations.

Definition of idnlgrey States

The states of an idnlgrey model are defined explicitly by the user in the function or MEX-file (as specified in the FileName property of the model) storing the model structure. The concept of states is useful for functions such as sim, predict, compare, and findstates.

Note: The initial values of the states are configured by the InitialStates property of the idnlgrey model.

```
See Also
pem | get | set | getinit | setinit | getpar | idnlmodel| setpar
```


idnlhw

Hammerstein-Wiener model

Syntax

```
m = idnlhw([nb nf nk])
m = idnlhw([nb nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'Name',Value)
m = idnlhw(LinModel)
m = idnlhw(LinModel,InputNL,OutputNL)
m = idnlhw(LinModel,InputNL,OutputNL,'PropertyName',PropertyValue)
```


Description

Represents Hammerstein-Wiener models. The Hammerstein-Wiener structure represents a linear model with input-output nonlinearities.

Typically, you use the nlhw command to both construct the idnlhw object and estimate the model parameters. You can configure the model properties directly in the nlhw syntax. For information about the Hammerstein-Wiener model structure, see "Structure of Hammerstein-Wiener Models".

You can also use the idnlhw constructor to create the Hammerstein-Wiener model structure and then estimate the parameters of this model using pem.

For idnlhw object properties, see:

- "idnlhw Model Properties" on page 1-436
- "idnlhw Algorithm Properties" on page 1-439

Construction

$m=i d n l h w([n b n f n k])$ creates an idnlhw object using default piecewise linear functions for the input and output nonlinearity estimators. $n b, n f$, and $n k$ are positive integers that specify model orders and delays. $n b$ is the number of zeros plus $1, n f$ is the number of poles, and $n k$ is the input delay.
m = idnlhw([nb nf nk],InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
$m=$ idnlhw([nb nf nk],InputNL,OutputNL,'Name', Value) creates the object using options specified as idnlhw model property or idnlhw algorithm property name and value pairs. Specify Name inside single quotes.
$m=$ idnlhw(LinModel) uses a linear model (in place of [nb nf nk]) and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete time input-output polynomial model of Output-Error (OE) structure (idpoly), state-space model with no disturbance component (idss with $K=0$), or transfer function model (idtf). LinModel sets the model orders, input delay, B and F polynomial values, input-output names and units, sampling time, and time units of m.
$m=$ idnlhw(LinModel,InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL.
$m=$ idnlhw(LinModel,InputNL,OutputNL,'PropertyName',PropertyValue) creates the object using options specified as idnlhw property name and value pairs.

Input Arguments

```
nb, nf, nk
```

Model orders and input delay, where $n b$ is the number of zeros plus $1, n f$ is the number of poles, and $n k$ is the input delay.

For nu inputs and ny outputs, nb, nf, and, nk are ny-by-nu matrices whose i-jth entry specifies the orders and delay of the transfer function from the j th input to the i th output.

Default:

InputNL, OutputNL

Input and output nonlinearity estimators, respectively, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.

'pwlinear ' or pwlinear object (default)	Piecewise linear function
'sigmoidnet ' or sigmoidnet object	Sigmoid network
'wavenet ' or wavenet object	Wavelet network

'saturation ' or saturation object	Saturation
'deadzone ' or deadzone object	Dead zone
'poly1d ' or poly1d object	One-dimensional
	polynomial
'unitgain' or unitgain object	Unit gain
customnet object	Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

LinModel

Discrete time linear model, specified as one of the following:

- Input-output polynomial model of Output-Error (OE) structure (idpoly)
- State-space model with no disturbance component (idss with $K=0$)
- Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid or tfest.

Default:

idnlhw Model Properties

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% Get the model B parameters
get(m,'b')
%Get value of InputNonlinearity property
m.InputNonlinearity
```

You can specify property name-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.
The following table summarizes idnlhw model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).

Property Name	Description	
Algorithm	A structure that specifies the estimation algorithm options, as described in "idnlhw Algorithm Properties" on page 1-439.	
b	B polynomial as a cell array of Ny-by-Nu elements, where Ny is the number of outputs and Nu is the number of inputs. An element $b\{i, j\}$ is a row vector representing the numerator polynomial for the j th input to ith output transfer function. It contains as many leading zeros as there are input delays.	
f	F polynomial as a cell array of Ny -by-Nu elements, where Ny is the number of outputs and Nu is the number of inputs. An element $f\{i, j\}$ is a row vector representing the denominator polynomial for the j :th input to ith output transfer function.	
LinearModel	(Read only) The linear model in the linear block, represented as an idpoly object.	
EstimationInfo	A read-only structure that stores estimation settings and results. The structure has the following fields:	
	Field Name	Description
	Status	Shows whether the model parameters were estimated.
	Method	Shows the estimation method.
	LossFcn	Value of the loss function, equal to $\operatorname{det}\left(E^{\prime *} E / N\right)$, where E is the residual error matrix (one column for each output) and N is the total number of samples.
	FPE	Value of Akaike's Final Prediction Error (see fpe).
	DataName	Name of the data from which the model is estimated.
	DataLength	Length of the estimation data.

Property Name	Description	
	Field Name	Description
	DataTs	Sampling interval of the estimation data.
	DataDomain	'Time ' means time domain data. 'Frequency ' is not supported.
	DataInterSample	Intersample behavior of the input estimation data used for interpolation: - 'zoh ' means zero-order-hold, or piecewise constant. - 'foh ' means first-order-hold, or piecewise linear.
	WhyStop	Reason for terminating parameter estimation iterations.
	UpdateNorm	Norm of the search vector (gn-vector) in the last iteration. Empty when lsqnonlin' is the search method.
	LastImprovement	Criterion improvement in the last iteration, shown in \%. Empty when lsqnonlin' is the search method.
	Iterations	Number of iterations performed by the estimation algorithm.
	Warning	Any warnings encountered during parameter estimation.
	InitRandState	The value of random number type and seed at the last randomization of the initial parameter vector.
	EstimationTime	Duration of the estimation.

Property Name	Description
InputNonlinearity	Nonlinearity estimator object. Assignable values include pwlinear (default), deadzone, wavenet, saturation, customnet, sigmoidnet, poly1d, and unitgain. For more information, see the corresponding reference pages.
	For ny outputs, Nonlinearity is an ny-by-1 array, such as [sigmoidnet; wavenet]. However, if you specify a scalar object, this nonlinearity object applies to all outputs.
OutputNonlinearity nb nk	Same as InputNonlinearity.
Model orders and input delays, where nb is the number of zeros plus $1, n f$ is the number of poles, and nk is the delay from input to output in terms of the number of samples. For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices whose i-jth entry specifies the orders and delay of the transfer function from the j th input to the i th output.	

idnlhw Algorithm Properties

The following table summarizes the fields of the Algorithm idnlhw model properties. Algorithm is a structure that specifies the estimation-algorithm options.

Property Name	Description
Advanced	A structure that specifies additional estimation algorithm options. The structure has the following fields:
	Description
GnPinvConst	When the search direction is computed, the algorithm discards the singular values of the Jacobian that are smaller than GnPinvConst*max (size (J)) *norm (J) *eps. Singular values that are closer to 0 are included when GnPinvConst is decreased. Default: 1e4. Assign a positive, real value.

Property Name	Description	
	Field Name	Description
	LMStartValue	(For Levenberg-Marquardt search algorithm) The starting level of regularization when using the Levenberg-Marquardt search method (Algorithm.SearchMethod='lm'). Default: 0.001. Assign a positive real value.
	LMStep	(For Levenberg-Marquardt search algorithm) Try this next level of regularization to get a lower value of the criterion function. The level of regularization is LMStep times the previous level. At the start of a new iteration, the level of regularization is computed as $1 /$ LMStep times the value from the previous iteration. Default: 10. Assign a real value >1.
	MaxBisections	Maximum number of bisections performed by the line search algorithm along the search direction (number of rotations of search vector for ' 1 m '). Used by 'gn', 'lm', 'gna' and 'grad' search methods (Algorithm.SearchMethod property). Default: 10. Assign a positive integer value.
	MaxFunEvals	The iterations are stopped if the number of calls to the model file exceeds this value. Default: Inf. Assign a positive integer value.
	MinParChange	The smallest parameter update allowed per iteration. Default: 1e-16. Assign a positive, real value.
	RelImprovement	The iterations are stopped if the relative improvement of the criterion function is less than RelImprovement. Default: 0 .

Property Name	Description	
	Field Name	Description
		Assign a positive real value.
		Note: This does not apply when Algorithm. SearchMethod='lsqnonlin'.
	StepReduction	(For line search algorithm) The suggested parameter update is reduced by the factor 'StepReduction' after each try until either 'MaxBisections' tries are completed or a lower value of the criterion function is obtained. Default: 2. Assign a positive, real value >1.
		Note: This does not apply when Algorithm. SearchMethod='lsqnonlin'.

Property Name	Description
Criterion	The search method of lsqnonlin supports the Trace criterion only. Use for multiple-output models only. Criterion can have the following values: - 'Det ': Minimize $\operatorname{det}\left(E^{\prime}\right.$ *E), where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. 'Trace ': Minimize the trace of the weighted prediction error matrix trace ($E^{\prime}{ }^{*} E^{*} W$), where E is the matrix of prediction errors, with one column for each output, and W is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (E^{\prime} *E), or the traditional leastsquares criterion). You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property. If the model contains neuralnet or treepartition as one of its nonlinearity estimators, weighting is not applied because estimations are independent for each output. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. Det can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion. If you want to achieve better accuracy for a particular channel in MIMO models, use Trace with weighting that favors that channel. Otherwise, use Det. If you use Det, check cond (model.NoiseVariance) after estimation. If the matrix is ill-conditioned, try using the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

Property Name	Description
Display	Toggles displaying or hiding estimation progress information in the MATLAB Command Window. Default: 'Off '. Assignable values: $-\quad$ 'Off ' — Hide estimation information. $-\quad$ 'On' — Display estimation information.
IterWavenet	(For wavenet nonlinear estimator only) Implicitly set to perform iterative estimation. Changing this setting does not impact the algorithm. Default: 'On '.
LimitError	Robustification criterion that limits the influence of large residuals, specified as a positive real value. Residual values that are larger than 'LimitError' times the estimated residual standard deviation have a linear cost instead of the usual quadratic cost. Default: 0 (no robustification).
MaxIter	Maximum number of iterations for the estimation algorithm, specified as a positive integer. Default: 20.
MaxSize	The number of elements (size) of the largest matrix to be formed by the algorithm. Computational loops are used for larger matrices. Use this value for memory/speed trade-off. MaxSize can be any positive integer. Default: 250000.

Property Name	Description
Regularization	Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters". Structure with the following fields: - Lambda - Constant that determines the bias versus variance tradeoff. Specify a positive scalar to add the regularization term to the estimation cost. The default value of zero implies no regularization. Default: 0 - R - Weighting matrix. Specify a vector of nonnegative numbers or a square positive semidefinite matrix. The length must be equal to the number of free parameters of the model. For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of np positive numbers such that each entry denotes the confidence in the value of the associated parameter. The default value of 1 implies a value of eye (npfree), where npfree is the number of free parameters. Default: 1 - Nominal - The nominal value towards which the free parameters are pulled during estimation. The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work. Default: 0

Property Name	Description
SearchMethod	Method used by the iterative search algorithm. Assignable values: - 'Auto ' - Automatically chooses from the following methods. - 'gn' - Gauss-Newton method. - 'gna' - Adaptive Gauss-Newton method. - 'grad' - A gradient method. - ' lm' - Levenberg-Marquardt method. - 'lsqnonlin' - Nonlinear least-squares method (requires the Optimization Toolbox product). This method handles only the 'Trace' criterion.
Tolerance	Specifies to terminate the iterative search when the expected improvement of the parameter values is less than Tolerance, specified as a positive real value in $\%$. Default: 0.01.
Weighting	Positive semi-definite matrix W used for weighted trace minimization. When Criterion = 'Trace', trace ($E^{\prime} * E * W$) is minimized. Weighting can be used to specify relative importance of outputs in multiple-input multipleoutput models (or reliability of corresponding data) when W is a diagonal matrix of nonnegative values. Weighting is not useful in single-output models. By default, Weighting is an identity matrix of size equal to the number of outputs.

Examples

Create default Hammerstein-Wiener model structure:

```
    m = idnlhw([2 2 1]) % na=nb=2 and nk=1
% m has piecewise linear input and output nonlinearity
```

Create nonlinear ARX model structure with sigmoid network nonlinearity:

```
m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15
```

Create Hammerstein-Wiener model with specific input-output nonlinearities:

```
    m=idnlhw([2 2 1],'sigmoidnet','deadzone')
% Equivalent to m=idnlhw([2 2 1],'sig','dead')
% Nonlinearities have default configuration
```

Create Hammerstein-Wiener model and configure the nonlinearity objects:

```
m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))
```

Create a Hammerstein model (no output nonlinearity):

```
m=idnlhw([2 2 1],'saturation',[])
% [] specifies unitgain output nonlinearity
```

Configure the Hammerstein-Wiener model and estimate models parameters:

```
m0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,m0); % equivalent to m=nlhw(data,m0)
```

Construct default Hammerstein-Wiener model using an input-output polynomial model of Output-Error structure:

```
% Construct an input-output polynomial model of OE structure.
B = [0.8 1];
F = [1 -1.2 0.5];
LinearModel = idpoly(1, B, 1,1, F, 'Ts', 0.1);
% Construct Hammerstein-Wiener model using OE model
% as its linear component.
m1 = idnlhw(LinearModel, 'saturation', [])
```


More About

Hammerstein-Wiener Model Structure

This block diagram represents the structure of a Hammerstein-Wiener model:

where:

- $w(t)=f(u(t))$ is a nonlinear function transforming input data $u(t) . w(t)$ has the same dimension as $u(t)$.
- $\quad x(t)=(B / F) w(t)$ is a linear transfer function. $x(t)$ has the same dimension as $y(t)$.
where B and F are similar to polynomials in the linear Output-Error model, as described in "What Are Polynomial Models?".

For $n y$ outputs and $n u$ inputs, the linear block is a transfer function matrix containing entries:

$$
\frac{B_{j, i}(q)}{F_{j, i}(q)}
$$

where $j=1,2, \ldots$, ny and $i=1,2, \ldots$, nu.

- $y(t)=h(x(t))$ is a nonlinear function that maps the output of the linear block to the system output.
$w(t)$ and $x(t)$ are internal variables that define the input and output of the linear block, respectively.

Because f acts on the input port of the linear block, this function is called the input nonlinearity. Similarly, because h acts on the output port of the linear block, this function is called the output nonlinearity. If system contains several inputs and outputs, you must define the functions f and h for each input and output signal.

You do not have to include both the input and the output nonlinearity in the model structure. When a model contains only the input nonlinearity f, it is called a Hammerstein model. Similarly, when the model contains only the output nonlinearity h), it is called a Wiener model.

The nonlinearities f and h are scalar functions, one nonlinear function for each input and output channel.

The Hammerstein-Wiener model computes the output y in three stages:
1 Computes $w(t)=f(u(t))$ from the input data.
$w(t)$ is an input to the linear transfer function B / F.
The input nonlinearity is a static (memoryless) function, where the value of the output a given time t depends only on the input value at time t.

You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead zone, piecewise linear function, one-dimensional polynomial, or a custom network. You can also remove the input nonlinearity.
2 Computes the output of the linear block using $w(t)$ and initial conditions: $x(t)=(B /$ $F) w(t)$.

You can configure the linear block by specifying the numerator B and denominator F orders.
3 Compute the model output by transforming the output of the linear block $x(t)$ using the nonlinear function $h: y(t)=h(x(t))$.

Similar to the input nonlinearity, the output nonlinearity is a static function. Configure the output nonlinearity in the same way as the input nonlinearity. You can also remove the output nonlinearity, such that $y(t)=x(t)$.

Resulting models are idnlhw objects that store all model data, including model parameters and nonlinearity estimator. See the idnlhw reference page for more information.

idnlhw States

The toolbox requires states for simulation and prediction using sim(idnlhw), predict, and compare. States are also necessary for linearization of nonlinear ARX models using linearize. The toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.

The states of the Hammerstein-Wiener model correspond to the states of the linear block in the Hammerstein-Wiener model structure:

The linear block contains all the dynamic elements of the model. If this linear model is not a state-space structure, the states are defined as those of model Mss, where Mss = idss (Model.LinearModel) and Model is the idnlhw object.

- "Identifying Hammerstein-Wiener Models"
- "Using Linear Model for Hammerstein-Wiener Estimation"

```
See Also
customnet | linear | idnlmodel | linearize | nlhw | pem | poly1d |
saturation | sigmoidnet | wavenet| saturation
```


Tutorials

- ""
- ""

idnlmodel

Superclass for nonlinear models

Description

You do not use the idnlmodel class directly. Instead, idnlmodel defines the common properties and methods inherited by its subclasses, idnlarx, idnlgrey, and idnlhw.

idnlmodel Properties

The following table lists the properties shared by the idnlarx, idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.

Property Name	Description
InputName	Specifies the names of individual input channels. Default: \{'u1'; 'u2'; ... ; 'uNu'\}. Assignable values: - For single-output models, a string. For example, 'torque '. - For multiple-output models, an nu-by-1 cell array. For example: \{'thrust'; 'aileron deflection'\}
InputUnit	Specifies the units of each input channel. Default: ' ' Assignable values: - For single-output models, a string. For example, 'm/s'. - For multiple-output models, an nu-by- 1 cell array.
Name	Name of the model, specified as a string.
NoiseVariance	Noise variance (covariance matrix) of the model innovations e. Assignable value is an ny-by-ny matrix. Typically set automatically by the estimation algorithm.
OutputName	Specifies the names of individual output channels.

Property Name	Description
	Default: \{'y1'; 'y2';...;'yNy'\}. Assignable values: - For single-output models, a string. For example, 'torque '. - For multiple-output models, an ny-by-1 cell array. For example: \{'thrust'; 'aileron deflection'\}
OutputUnit	Specifies the units of each output channel. Default: ' ' Assignable values: - For single-output models, a string. For example, 'm/s '. - For multiple-output models, an ny-by-1 cell array.
TimeUnit	Unit of the sampling interval and time vector, specified as one of the following: - 'nanoseconds' - 'microseconds' - 'milliseconds' - 'seconds' - 'minutes' - 'hours' - 'days' - 'weeks' - 'months' - 'years' Default: 'seconds '.
TimeVariable	Independent variable for the inputs, outputs, and-when availableinternal states, specified as a string. Default: 't' (time).

Property Name	Description
Ts	Sampling interval with the unit specified by TimeUnit. Default: 1. Assignable values:
	For discrete-time models, positive scalar value of the sampling interval. For continuous-time models, 0(idnlgrey models only).

See Also

idnlarx
idnlgrey
idnlhw

idpar

Create parameter for initial states and input level estimation

Syntax

p = idpar(paramvalue)
p = idpar(paramname, paramvalue)

Description

p = idpar(paramvalue) creates an estimable parameter with initial value paramvalue. The parameter, p, is either scalar or array-valued, with the same dimensions as paramvalue. You can configure attributes of the parameter, such as which elements are fixed and which are estimated, and lower and upper bounds.
p = idpar(paramname, paramvalue) sets the Name property of p to the string paramname.

Input Arguments

paramvalue

Initial parameter value.
paramvalue is a numeric scalar or array that determines both the dimensions and initial values of the estimable parameter p. For example, $p=$ idpar(eye(3)) creates a 3-by-3 parameter whose initial value is the identity matrix.
paramvalue should be:

- A column vector of length N_{x}, the number of states to estimate, if you are using p for initial state estimation.
- An $N_{x^{-}}$-by- N_{e} array, if you are using p for initial state estimation with multiexperiment data. N_{e} is the number of experiments.
- A column vector of length N_{u}, the number of inputs to estimate, if you are using p for input level estimation.
- An N_{u}-by- N_{e} array, if you are using p for input level estimation with multi-experiment data.

If the initial value of a parameter is unknown, use NaN .

paramname

String specifying the Name property of p .
The Name property is not used in state estimation or input level estimation. You can optionally assign a name for convenience. For example, you can assign x0 as the name of a parameter created for initial state estimation.

Default: 'par'

Output Arguments

p

Estimable parameter, specified as a param.Continuous object.
p can be either scalar- or array-valued. p takes its dimensions and initial value from paramvalue.
p contains the following fields:

- Value - Scalar or array value of the parameter.

The dimension and initial value of p. Value are taken from paramvalue when p is created.

- Minimum - Lower bound for the parameter value. When you use p in state estimation or input value estimation, the estimated value of the parameter does not drop below p.Minimum.

The dimensions of p. Minimum must match the dimensions of p. Value.
For array-valued parameters, you can:

- Specify lower bounds on individual array elements. For example, p. Minimum ([1 4]) $=-5$.
- Use scalar expansion to set the lower bound for all array elements. For example, p.Minimum = -5

Default: - Inf

- Maximum - Upper bound for the parameter value. When you use p in state estimation or input value estimation, the estimated value of the parameter does not exceed p.Maximum.

The dimensions of p.Maximum must match the dimensions of p.Value.
For array-valued parameters, you can:

- Specify upper bounds on individual array elements. For example, p.Maximum ([1 4]) $=5$.
- Use scalar expansion to set the upper bound for all array elements. For example, p.Maximum $=5$

Default: Inf

- Free - Boolean specifying whether the parameter is a free estimation variable.

The dimensions of p. Free must match the dimensions of p.Value. By default, all values are free (p . Free = true).

If you want to estimate p.Value(k), set $p . F r e e(k)=$ true. To fix $p . V a l u e(k)$, set p.Free (k) = false. Doing so allows you to control which states or input values are estimated and which are not.

For array-valued parameters, you can:

- Fix individual array elements. For example, p.Free([14 4]) = false; p.Free = [10; 0 1].
- Use scalar expansion to fix all array elements. For example, p.Free = false.

Default: true (1)

- Scale - Scaling factor for normalizing the parameter value.
p.Scale is not used in initial state estimation or input value estimation.

Default: 1

- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels. For example, p.Info(1,1).Unit = 'rad/m'; p.Info(1,1).Label = 'engine speed'.

The dimensions of p. Info must match the dimensions of p.Value.
Default: ' ' for both Label and Unit fields

- Name - Parameter name.

This property is read-only. It is set to the paramname input argument when you create the parameter.

Default: '

Examples

Create and Configure Parameter for State Estimation

Create and configure a parameter for estimating the initial state values of a 4 -state system. Fix the first state value to 1 . Limit the second and third states to values between 0 and 1.

```
paramvalue = [1; nan(3,1)];
p = idpar('x0',paramvalue);
p.Free(1) = 0;
p.Minimum([2 3]) = 0;
p.Maximum([2 3]) = 1;
```

The column vector paramvalue specifies an initial value of 1 for the first state. paramvalue further specifies unknown values for the remaining 3 states.

Setting p.Free(1) to false fixes p.Value(1) to 1 . Estimation using p does not alter that value.

Setting p.Minimum and p.Maximum for the second and third entries in p limits the range that those values can take when p is used in estimation.

You can now use p in initial state estimation, such as with the findstates command. For example, use opt = findstatesOptions('InitialState', p) to create a findstates options set that uses p. Then, call findstates with that options set.

More About

Tips

Use idpar to create estimable parameters for:

- Initial state estimation for state-space model estimation (ssest), prediction (predict), and forecasting (forecast)
- Explicit initial state estimation with findstates
- Input level estimation for process model estimation with pem

Specifying estimable state values or input levels gives you explicit control over the behavior of individual state values during estimation.

```
See Also
findstates(idParametric) | findstatesOptions | forecast| pem | predict |
ssest
```


idpoly

Polynomial model with identifiable parameters

Syntax

```
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts)
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value)
sys = idpoly(A)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value)
sys = idpoly(sys0)
sys = idpoly(sys0,'split')
```


Description

sys = idpoly (A, B, C, D, F, NoiseVariance, Ts) creates a polynomial model with identifiable coefficients. A, B, C, D, and F specify the initial values of the coefficients. NoiseVariance specifies the initial value of the variance of the white noise source. Ts is the model sampling time.
sys = idpoly(A, B, C, D, F,NoiseVariance, Ts, Name, Value) creates a polynomial model using additional options specified by one or more Name,Value pair arguments.
sys = idpoly (A) creates a time series model with only an autoregressive term. In this case, sys represents the AR model given by $A\left(q^{-1}\right) y(t)=e(t)$. The noise $e(t)$ has variance 1. A specifies the initial values of the estimable coefficients.
sys = idpoly(A, [], C, D, [], NoiseVariance, Ts) creates a time series model with an autoregressive and a moving average term. The inputs A, C, and D, specify the initial values of the estimable coefficients. NoiseVariance specifies the initial value of the noise $e(t)$. Ts is the model sampling time. (Omit NoiseVariance and Ts to use their default values.)

If $D=[]$, then sys represents the ARMA model given by:

$$
A\left(q^{-1}\right) y(t)=C\left(q^{-1}\right) e(t)
$$

sys = idpoly(A, [], C, D, [], NoiseVariance, Ts, Name, Value) creates a time series model using additional options specified by one or more Name,Value pair arguments.
sys = idpoly(sys0) converts any dynamic system model, sys0, to idpoly model form.
sys = idpoly(sys0,'split') converts sys0 to idpoly model form, and treats the last N_{y} input channels of sys 0 as noise channels in the returned model. sys 0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs.

Object Description

An idpoly model represents a system as a continuous-time or discrete-time polynomial model with identifiable (estimable) coefficients.

A polynomial model of a system with input vector u, output vector y, and disturbance e takes the following form in discrete time:

$$
A(q) y(t)=\frac{B(q)}{F(q)} u(t)+\frac{C(q)}{D(q)} e(t)
$$

In continuous time, a polynomial model takes the following form:

$$
A(s) Y(s)=\frac{B(s)}{F(s)} U(s)+\frac{C(s)}{D(s)} E(s)
$$

$U(s)$ are the Laplace transformed inputs to sys. $Y(s)$ are the Laplace transformed outputs. $E(s)$ is the Laplace transform of the disturbance.

For idpoly models, the coefficients of the polynomials A, B, C, D, and F can be estimable parameters. The idpoly model stores the values of these matrix elements in the a, b, c, d , and f properties of the model.

Time series models are special cases of polynomial models for systems without measured inputs. For AR models, b and fare empty, and c and d are 1 for all outputs. For ARMA models, b and f are empty, while d is 1 .

There are three ways to obtain an idpoly model:

- Estimate the idpoly model based on output or input-output measurements of a system, using such commands as polyest, arx, armax, oe, bj, iv4, or ivar. These estimation commands estimate the values of the free polynomial coefficients. The estimated values are stored in the a, b, c, d, and f properties of the resulting idpoly model. The Report property of the resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.

When you obtain an idpoly model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as polydata, getpar, or getcov.

- Create an idpoly model using the idpoly command.

You can create an idpoly model to configure an initial parameterization for estimation of a polynomial model to fit measured response data. When you do so, you can specify constraints on the polynomial coefficients. For example, you can fix the values of some coefficients, or specify minimum or maximum values for the free coefficients. You can then use the configured model as an input argument to polyest to estimate parameter values with those constraints.

- Convert an existing dynamic system model to an idpoly model using the idpoly command.

Examples

Multi-Output ARMAX Model

Create an idpoly model representing the one-input, two-output ARMAX model described by the following equations:

$$
\begin{aligned}
& y_{1}(t)+0.5 y_{1}(t-1)+0.9 y_{2}(t-1)+0.1 y_{2}(t-2)= \\
& u(t)+5 u(t-1)+2 u(t-2)+e_{1}(t)+0.01 e_{1}(t-1) \\
& y_{2}(t)+0.05 y_{2}(t-1)+0.3 y_{2}(t-2)= \\
& 10 u(t-2)+e_{2}(t)+0.1 e_{2}(t-1)+0.02 e_{2}(t-2) .
\end{aligned}
$$

y_{1} and y_{2} are the two outputs, and u is the input. e_{1} and e_{2} are the white noise disturbances on the outputs y_{1} and y_{2} respectively.

To create the idpoly model, define the A, B, and C polynomials that describe the relationships between the outputs, inputs, and noise values. (Because there are no denominator terms in the system equations, B and F are 1.)

Define the cell array containing the coefficients of the A polynomials.

```
A = cell (2,2);
A{1,1} = [1 0.5];
A{1,2} = [lllll}00.9 0.1]
A{2,1} = [0];
A{2,2} = [110.05 0.3];
```

You can read the values of each entry in the A cell array from the left side of the equations describing the system. For example, A\{1,1\} describes the polynomial that gives the dependence of y_{1} on itself. This polynomial is $A_{11}=1+0.5 q^{-1}$, because each factor of q^{-1} corresponds to a unit time decrement. Therefore, $\mathrm{A}\{1,1\}=\left[\begin{array}{ll}1 & 0.5\end{array}\right]$, giving the coefficients of A_{11} in increasing exponents of q^{-1}.

Similarly, $\mathrm{A}\{1,2\}$ describes the polynomial that gives the dependence of y_{1} on y_{2}. From the equations, $A_{12}=0+0.9 q^{-1}+0.1 q^{-2}$. Thus, A\{1,2\} $=\left[\begin{array}{llll}0 & 0.9 & 0.1\end{array}\right]$.

The remaining entries in A are similarly constructed.
Define the cell array containing the coefficients of the B polynomials.

```
B = cell(2,1);
B{1,1} = [1 5 2];
B{2,1} = [0 0 10];
```

B describes the polynomials that give the dependence of the outputs y_{1} and y_{2} on the input u. From the equations, $B_{11}=1+5 q^{-1}+2 q^{-2}$. Therefore, $\mathrm{B}\{1,1\}=\left[\begin{array}{lll}1 & 5 & 2\end{array}\right]$.

Similarly, from the equations, $B_{21}=0+0 q^{-1}+10 q^{-2}$. Therefore, $\mathrm{B}\{2,1\}=\left[\begin{array}{lll}0 & 0 & 10\end{array}\right]$.
Define the cell array containing the coefficients of the C polynomials.
$C=\operatorname{cell}(2,1) ;$

```
C{1,1} = [11 0.01];
C{2,1} = [lllll}10.10.02]
```

C describes the polynomials that give the dependence of the outputs y_{1} and y_{2} on the noise terms e_{1} and e_{2}. The entries of C can be read from the equations similarly to those of A and B.

Create an idpoly model with the specified coefficients.

```
sys = idpoly(A,B,C)
sys =
Discrete-time ARMAX model:
    Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + C(z)e_1(t)
        A(z) = 1 + 0.5 z^-1
        A_2(z) = 0.9 z^-1 + 0.1 z^-2
        B(z) = 1 + 5 z^-1 + 2 z^-2
        C(z) = 1 + 0.01 z^-1
    Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
        A(z) = 1 + 0.05 z^-1 + 0.3 z^-2
        B(z) = 10 z^-2
        C(z) = 1 + 0.1 z^-1 + 0.02 z^-2
Sample time: unspecified
Parameterization:
    Polynomial orders: na=[1 2;0 2] nb=[3;1] nc=[1;2]
    nk=[0;2]
    Number of free coefficients: 12
    Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
```


Status:

```
Created by direct construction or transformation. Not estimated.
```

The display shows all the polynomials and allows you to verify them. The display also states that there are 12 free coefficients. Leading terms of diagonal entries in A are always fixed to 1 . Leading terms of all other entries in A are always fixed to 0 .

You can use sys to specify an initial parametrization for estimation with such commands as polyest or armax.

- "Estimate Polynomial Models in the App"
- "Estimate Polynomial Models at the Command Line"
- "Polynomial Sizes and Orders of Multi-Output Polynomial Models"

Input Arguments

A, B,C,D,F

Initial values of polynomial coefficients.
For SISO models, specify the initial values of the polynomial coefficients as row vectors. Specify the coefficients in order of:

- Ascending powers of z^{-1} or q^{-1} (for discrete-time polynomial models).
- Descending powers of s or p (for continuous-time polynomial models).

The leading coefficients of A, C, D, and F must be 1 . Use NaN for any coefficient whose initial value is not known.

For MIMO models with N_{y} outputs and N_{u} inputs, A, B, C, D, and F are cell arrays of row vectors. Each entry in the cell array contains the coefficients of a particular polynomial that relates input, output, and noise values.

Polynomial	Dimension	Relation Described
A	N_{y}-by- N_{y} array of row vectors	$\mathrm{A}\{\mathrm{i}, \mathrm{j}\}$ contains coefficients of relation between output y_{i} and output y_{j}
B, F	N_{y}-by- N_{u} array of row vectors	$\mathrm{B}\{\mathrm{i}, \mathrm{j}\}$ and $\mathrm{F}\{\mathrm{i}, \mathrm{j}\}$ contain coefficients of relations between output y_{i} and input u_{j}
C, D	N_{y}-by- 1 array of row vectors	$\mathrm{C}\{\mathrm{i}\}$ and $\mathrm{D}\{\mathrm{i}\}$ contain coefficients of relations between output y_{i} and noise e_{i}

The leading coefficients of the diagonal entries of $A(A\{i, i\}, i=1: N y)$ must be 1 . The leading coefficients of the off-diagonal entries of A must be zero, for causality. The leading coefficients of all entries of C, D, and F , must be 1 .

Use [] for any polynomial that is not present in the desired model structure. For example, to create an ARX model, use [] for C, D, and F. For an ARMA time series, use [] for B and F.

Default: B = [] ; C = 1 for all outputs; D = 1 for all outputs; $F=[]$

Ts

Sampling time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Default: -1 (discrete-time model with unspecified sampling time)

NoiseVariance

The variance (covariance matrix) of the model innovations e.
An identified model includes a white, Gaussian noise component $e(t)$. NoiseVariance is the variance of this noise component. Typically, a model estimation function (such as polyest) determines this variance. Use this input to specify an initial value for the noise variance when you create an idpoly model.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a N_{y}-by- N_{y} matrix, where N_{y} is the number of outputs in the system.

Default: N_{y}-by- N_{y} identity matrix

sys0

Dynamic system.
Any dynamic system to be converted into an idpoly object.
When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If you want to translate the estimated parameter covariance during the conversion, use translatecov.

For the syntax sys = idpoly(sys0, 'split'), sys0 must be a numeric (nonidentified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs. Finally, the subsystem sys0 (: , Ny+1:Nu) must be biproper.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name, Value arguments to specify additional properties of idpoly models during model creation. For example, idpoly (A, B, C, D, F, 1, 0, 'InputName', 'Voltage') creates an idpoly model with the InputName property set to Voltage.

Properties

idpoly object properties include:

$$
a, b, c, d, f
$$

Values of polynomial coefficients.
If you create an idpoly model sys using the idpoly command, sys.a, sys.b, sys.c, sys.d, and sys.f contain the initial coefficient values that you specify with the A, B, C, D, and F input arguments, respectively.

If you obtain an idpoly model by identification, then sys.a, sys.b, sys.c, sys.d, and sys.f contain the estimated values of the coefficients.

For an idpoly model sys, each property sys.a, sys.b, sys.c, sys.d, and sys.f is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value.

For SISO polynomial models, the values of the numerator coefficients are stored as a row vector in order of:

- Ascending powers of z^{-1} or q^{-1} (for discrete-time transfer functions).
- Descending powers of s or p (for continuous-time transfer functions).

The leading coefficients of A, C, and D are fixed to 1 . Any coefficient whose initial value is not known is stored as NaN .

For MIMO models with N_{y} outputs and N_{u} inputs, A, B, C, D, and F are cell arrays of row vectors. Each entry in the cell array contains the coefficients of a particular polynomial that relates input, output, and noise values.

Polynomial	Dimension	Relation Described
A	N_{y}-by- N_{y} array of row vectors	$\mathrm{A}\{\mathrm{i}, \mathrm{j}\}$ contains coefficients of relation between output y_{i} and output y_{j}
B, F	N_{y}-by- N_{u} array of row vectors	$\mathrm{B}\{\mathrm{i}, \mathrm{j}\}$ and $\mathrm{F}\{\mathrm{i}, \mathrm{j}\}$ contain coefficients of relations between output y_{i} and input u_{j}
C, D	N_{y}-by- 1 array of row vectors	$\mathrm{C}\{\mathrm{i}\}$ and $\mathrm{D}\{\mathrm{i}\}$ contain coefficients of relations between output y_{i} and noise e_{i}

The leading coefficients of the diagonal entries of $A(A\{i, i\}, \quad i=1: N y)$ are fixed to 1 . The leading coefficients of the off-diagonal entries of A are fixed to zero. The leading coefficients of all entries of C, D, and F, are fixed to 1 .

For a time series (a model with no measured inputs), B = [] and F = [].
Default: $B=[] ; C=1$ for all outputs; $D=1$ for all outputs; $F=[]$

Variable

String specifying the polynomial model display variable. Variable requires one of the following values:

- ' $z^{\wedge}-1^{\prime}$ - Default for discrete-time models
- ' $q^{\wedge}-1$ '—Equivalent to ${ }^{\prime} z^{\wedge}-1$ '
- 's' — Default for continuous-time models
- 'p'—Equivalent to 's '

The value of Variable is reflected in the display, and also affects the interpretation of the A, B, C, D, and F coefficient vectors for discrete-time models. For

Variable $={ }^{\prime} z^{\wedge}-1^{\prime}$ or ' $q^{\wedge}-1^{\prime}$, the coefficient vectors are ordered as ascending powers of the variable.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

If you create an idpoly model sys using the idpoly command, sys.ioDelay contains the initial values of the transport delay that you specify with a Name, Value argument pair.

For an idpoly model sys, the property sys.ioDelay is an alias to the value of the property sys.Structure.ioDelay.Value.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport are expressed as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay is a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

IntegrateNoise

Logical vector, denoting presence or absence of integration on noise channels.
Specify IntegrateNoise as a logical vector of length equal to the number of outputs.
IntegrateNoise(i) $=$ true indicates that the noise channel for the i th output contains an integrator. In this case, the corresponding D polynomial contains an additional term which is not represented in the property sys.d. This integrator term is equal to [10 0] for continuous-time systems, and equal to [1-1] for discrete-time systems.

Default: 0 for all output channels

Structure

Information about the estimable parameters of the idpoly model. sys. Structure.a, sys.Structure.b, sys.Structure.c, sys.Structure.d, and sys.Structure.f
contain information about the polynomial coefficients. sys. Structure.ioDelay contains information about the transport delay. sys.Structure. IntegrateNoise contain information about the integration terms on the noise. Each contains the following fields:

- Value - Parameter values. For example, sys.Structure.a. Value contains the initial or estimated values of the A coefficients.

NaN represents unknown parameter values.
For SISO models, each property sys.a, sys.b, sys.c, sys.d, sys.f, and sys.ioDelay is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value

For MIMO models, sys.a\{i,j\} is an alias to sys.Structure.a(i,j).Value, and similarly for the other identifiable coefficient values.

- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.ioDelay.Minimum = 0.1 constrains the transport delay to values greater than or equal to 0.1 .
sys.Structure.ioDelay.Minimum must be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Logical value specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free = false. For example, if B is a 3 -by- 3 matrix, sys. Structure.a.Free $=$ eyes(3) fixes all of the off-diagonal entries in B to the values specified in sys.Structure.b.Value. In this case, only the diagonal entries in B are estimable.

For fixed values, such as the leading coefficients in sys.Structure.a.Value, the corresponding value of Free is always false.

- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

For a MIMO model with Ny outputs and Nu inputs, the dimensions of the Structure elements are as follows:

- sys.Structure.a-Ny-by-Ny
- sys.Structure.b—Ny-by-Nu
- sys.Structure.c - Ny-by-1
- sys.Structure.d-Ny-by-1
- sys.Structure.f—Ny-by-Nu

An inactive polynomial, such as the B polynomial in a time series model, is not available as a parameter in the Structure property. For example, sys = idpoly ([1 -0.2 $0.5]$) creates an AR model. sys.Structure contains the fields sys.Structure.a, sys.Structure.ioDelay, and sys.Structure.IntegrateNoise. However, there is no field in sys. Structure corresponding to $\mathrm{b}, \mathrm{c}, \mathrm{d}$, or f .

NoiseVariance

The variance (covariance matrix) of the model innovations e.
An identified model includes a white, Gaussian noise component $e(t)$. NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as $a r x)$ determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a N_{y}-by- N_{y} matrix, where N_{y} is the number of outputs in the system.

Report

Information about the estimation process.
Report contains the following fields:

- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and their covariance.
- OptionsUsed - Options used during estimation (see ssestOptions or n4sidOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion. Not available when the model is estimated using arx or instrument variable approaches.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

OutputDelay

Output delays.
For identified systems, like idpoly, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: - 1 (discrete-time model with unspecified sampling time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

creates input groups named controls and noise that include input channels 1, 2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to \{'measurements(1)';'measurements(2)'\}.

When you estimate a model using an iddata object, data, the software automatically sets OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.InputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ' '

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:

```
nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGríd = struct('rpm', nominal_engine_rpm)
```

where sys is an array containing three identified models obtained at rpms 1000,5000 and 10000 , respectively.

Default: []

More About

Tips

- Although idpoly supports continuous-time models, idtf and idproc allow more choices for estimation of continuous-time models. Therefore, for some continuous-time applications, these model types are preferable.
- "What Are Polynomial Models?"
- "Dynamic System Models"

See Also

ar | armax | arx | bj | idproc | idss | idtf | iv4 | ivar | oe | polydata | polyest | setPolyFormat | translatecov

idproc

Continuous-time process model with identifiable parameters

Syntax

```
sys = idproc(type)
sys = idproc(type,Name,Value)
```


Description

sys = idproc(type) creates a continuous-time process model with identifiable parameters. type is a string that specifies aspects of the model structures, such as the number of poles in the model, whether the model includes an integrator, and whether the model includes a time delay.
sys = idproc(type,Name, Value) creates a process model with additional attributes specified by one or more Name,Value pair arguments.

Object Description

An idproc model represents a system as a continuous-time process model with identifiable (estimable) coefficients.

A simple SISO process model has a gain, a time constant, and a delay:

$$
\text { sys }=\frac{K_{p}}{1+T_{p 1} s} e^{-T_{d} s} .
$$

K_{p} is a proportional gain. $K_{p 1}$ is the time constant of the real pole, and T_{d} is the transport delay (dead time).

More generally, idproc can represent process models with up to three poles and a zero:

$$
s y s=K_{p} \frac{1+T_{z} s}{\left(1+T_{p 1} s\right)\left(1+T_{p 2} s\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s} .
$$

Two of the poles can be a complex conjugate (underdamped) pair. In that case, the general form of the process model is:

$$
s y s=K_{p} \frac{1+T_{z} s}{\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s}
$$

T_{ω} is the time constant of the complex pair of poles, and ζ is the associated damping constant.

In addition, any idproc model can have an integrator. For example, the following is a process model that you can represent with idproc:

$$
s y s=K_{p} \frac{1}{s\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)} e^{-T_{d} s}
$$

This model has no zero ($T_{z}=0$). The model has a complex pair of poles. The model also has an integrator, represented by the $1 / s$ term.

For idproc models, all the time constants, the delay, the proportional gain, and the damping coefficient can be estimable parameters. The idproc model stores the values of these parameters in properties of the model such as Kp, Tp1, and Zeta. (See "Properties" on page 1-484 for more information.)

A MIMO process model contains a SISO process model corresponding to each inputoutput pair in the system. For idproc models, the form of each input-output pair can be independently specified. For example, a two-input, one-output process can have one channel with two poles and no zero, and another channel with a zero, a pole, and an integrator. All the coefficients are independently estimable parameters.

There are two ways to obtain an idproc model:

- Estimate the idproc model based on output or input-output measurements of a system, using the procest command. procest estimates the values of the free parameters such as gain, time constants, and time delay. The estimated values are stored as properties of the resulting idproc model. For example, the properties sys.Tz and sys.Kp of an idproc model sys store the zero time constant and the proportional gain, respectively. (See "Properties" on page 1-484 for more
information.) The Report property of the resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.

When you obtain an idproc model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as getpar and getcov.

- Create an idproc model using the idproc command.

You can create an idproc model to configure an initial parameterization for estimation of a process model. When you do so, you can specify constraints on the parameters. For example, you can fix the values of some coefficients, or specify minimum or maximum values for the free coefficients. You can then use the configured model as an input argument to procest to estimate parameter values with those constraints.

Examples

SISO Process Model with Complex Poles and Time Delay

Create a process model with a pair of complex poles and a time delay. Set the initial value of the model to the following:

$$
\text { sys }=\frac{0.01}{1+2(0.1)(10) s+(10 s)^{2}} e^{-5 s}
$$

Create a process model with the specified structure.

```
sys = idproc('P2DU')
sys =
Process model with transfer function:
    Kp
G(s) = ------------------ * exp(-Td*s)
    1+2*Zeta*Tw*s+(Tw*s)^2
    Kp = NaN
    Tw = NaN
    Zeta = NaN
    Td = NaN
```

```
Parameterization:
    P2DU'
    Number of free coefficients: 4
    Use "getpvec", "getcov" for parameters and their uncertainties.
Status:
Created by direct construction or transformation. Not estimated.
```

The input string 'P2DU' specifies an underdamped pair of poles and a time delay. The display shows that sys has the desired structure. The display also shows that the four free parameters, Kp, Tw, Zeta, and Td are all initialized to NaN .

Set the initial values of all parameters to the desired values.

```
sys.Kp = 0.01;
sys.Tw = 10;
sys.Zeta = 0.1;
sys.Td = 5;
```

You can use sys to specify this parametrization and these initial guesses for process model estimation with procest.

MIMO Process Model

Create a one-input, three-output process model, where each channel has two real poles and a zero, but only the first channel has a time delay, and only the first and third channels have an integrator.

```
type = {'P2ZDI';'P2Z';'P2ZI'};
sys = idproc(type)
sys =
Process model with 3 outputs: y_k = Gk(s)u
    From input 1 to output 1:
                                1+Tz*s
    G1(s) = Kp * ---------------- * exp(-Td*s)
                                    s(1+Tp1*s)(1+Tp2*s)
            Kp = NaN
            Tp1 = NaN
            Tp2 = NaN
                    Td = NaN
```

```
        Tz = NaN
    From input 1 to output 2:
        1+Tz*s
G1(s)= Kp * ---------------
            Kp = NaN
        Tp1 = NaN
        Tp2 = NaN
        Tz = NaN
    From input 1 to output 3:
        1+Tz*s
G1(s) = Kp * ---------------
            Kp = NaN
        Tp1 = NaN
        Tp2 = NaN
        Tz = NaN
```


Parameterization:

```
        'P2DIZ'
        'P2Z'
        'P2IZ'
    Number of free coefficients: 13
    Use "getpvec", "getcov" for parameters and their uncertainties.
Status:
Created by direct construction or transformation. Not estimated.
```

Providing an array of type strings causes idproc to create a MIMO model where each type string in the array defines the structure of the corresponding I/O pair. Since type is a column vector of strings, sys is a one-input, 3 -output model having the specified parametrization structure. The string type $\{k, 1\}$ specifies the structure of the subsystem sys $(k, 1)$. All identifiable parameters are initialized to NaN .

Array of Process Models

Create a 3 -by- 1 array of process models, each containing one output and two input channels.

Create cell array of type strings.

```
type1 = {'P1D','P2DZ'};
type2 = {'PO','P3UI'};
type3 = {'P2D','P2DI'};
type = cat(3,type1,type2,type3);
size(type)
ans =
    1 2
```

Use type to create the array.
sysarr = idproc(type);

The first two dimensions of the cell array type set the output and input dimensions of each model in the array of process models. The remaining dimensions of the cell array set the array dimensions. Thus, sysarr is a 3 -model array of 2 -input, one-output process models.

Select a model from the array.

```
sysarr(:,:,2)
ans =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
    From input 1 to output 1:
    G11(s) = Kp
            Kp = NaN
    From input 2 to output 1:
                        Kp
```



```
            Kp = NaN
            Tw = NaN
            Zeta = NaN
            Tp3 = NaN
Parameterization:
    'P0' 'P3IU'
```

```
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.
```


Status:

Created by direct construction or transformation. Not estimated.
This two-input, one-output model corresponds to the type 2 entry in the type cell array.

Input Arguments

type

String or cell array of strings characterizing the model structure.
For SISO models, type is a string made up of a series of characters that specify aspects of the model structure.

Characters	Meaning
Pk	A process model with k poles (not including an integrator). k must be $0,1,2$, or 3.
Z	The process model includes a zero $\left(T_{z} \neq 0\right)$. A type string with P0 cannot include Z (a process model with no poles cannot include a zero).
D	The process model includes a time delay (deadtime) $\left(T_{d} \neq 0\right)$.
I	The process model includes an integrator $(1 / s)$.
U	The process model is underdamped. In this case, the process model includes a complex pair of poles

Every type string must begin with one of P0, P1, P2, or P3. All other components of the string are optional.

Example type strings include:

- 'P1D' specifies a process model with one pole and a time delay (deadtime) term:

$$
s y s=\frac{K_{p}}{1+T_{p 1} s} e^{-T_{d} s} .
$$

$\mathrm{Kp}, \mathrm{Tp} 1$, and Td are the identifiable parameters of this model.

- 'P2U' creates a process model with a pair of complex poles:

$$
\text { sys }=\frac{K_{p}}{\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)} .
$$

Kp, Tw, and Zeta are the identifiable parameters of this model.

- 'P3ZDI ' creates a process model with three poles. All poles are real, because the string does not include U. The model also includes a zero, a time delay, and an integrator:

$$
s y s=K_{p} \frac{1+T_{z} s}{s\left(1+T_{p 1} s\right)\left(1+T_{p 2} s\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s} .
$$

The identifiable parameters of this model are Kp, Tz, Tp1, Tp2, Tp3, and Td.
The values of all parameters in a particular model structure are initialized to NaN. You can change them to finite values by setting the values of the corresponding idproc model properties after you create the model. For example, sys.Td = 5 sets the initial value of the time delay of sys to 5 .

For a MIMO process model with Ny outputs and Nu inputs, type is an Ny-by-Nu cell array of strings specifying the structure of each input/output pair in the model. For example, type $\{i, j\}$ specifies the type of the subsystem sys (i, j) from the j th input to the y th output.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Use Name, Value arguments to specify parameter initial values and additional properties of idproc models during model creation. For example, sys = idproc('p2z','InputName','Voltage','Kp',10,'Tz',0); creates an idtf
model with the InputName property set to Voltage. The command also initializes the parameter Kp to a value of 10 , and Tz to 0 .

Properties

idproc object properties include:

Type

Cell array of strings characterizing the model structure.
For a SISO model sys, the property sys. Type contains a single string specifying the structure of the system.

For a MIMO model with Ny outputs and Nu inputs, sys. Type is an Ny-by-Nu cell array of strings specifying the structure of each input/output pair in the model. For example, type $\{\mathrm{i}, \mathrm{j}\}$ specifies the structure of the subsystem $\operatorname{sys}(i, j)$ from the j th input to the i th output.

The strings are made up of a series of characters that specify aspects of the model structure, as follows.

Characters	Meaning
Pk	A process model with k poles (not including an integrator). k is 0,1, 2, or 3.
Z	The process model includes a zero $\left(T_{z} \neq 0\right)$.
D	The process model includes a time delay (deadtime) $\left(T_{d} \neq 0\right)$.
I	The process model includes an integrator $(1 / s)$.
U	The process model is underdamped. In this case, the process model includes a complex pair of poles

If you create an idproc model sys using the idproc command, sys. Type contains the strings that you specify with the type input argument.

If you obtain an idproc model by identification using procest, then sys. Type contains the strings describing the model structures that you specified for that identification.

In general, you cannot change the type string of an existing model. However, you can change whether the model contains an integrator using the property sys. Integration.

Kp,Tp1,Tp2,Tp3,Tz,Tw, Zeta, Td

Values of process model parameters.
If you create an idproc model using the idproc command, the values of all parameters present in the model structure initialize by default to NaN. The values of parameters not present in the model structure are fixed to 0 . For example, if you create a model, sys, of type 'P1D', then Kp, Tp1, and Td are initialized to NaN and are identifiable (free) parameters. All remaining parameters, such as Tp2 and Tz, are inactive in the model. The values of inactive parameters are fixed to zero and cannot be changed.

For a MIMO model with Ny outputs and Nu inputs, each parameter value is an Ny -by-Nu cell array of strings specifying the corresponding parameter value for each input/output pair in the model. For example, sys.Kp(i,j) specifies the Kp value of the subsystem sys (i, j) from the j th input to the i th output.

For an idproc model sys, each parameter value property such as sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.Tp3 is an alias to the value of the property sys.Structure.Tp3.Value.

Default: For each parameter value, NaN if the process model structure includes the particular parameter; 0 if the structure does not include the parameter.

Integration

Logical value or matrix denoting the presence or absence of an integrator in the transfer function of the process model.

For a SISO model sys, sys. Integration $=$ true if the model contains an integrator.
For a MIMO model, sys. Integration (i, j) = true if the transfer function from the j th input to the i th output contains an integrator.

When you create a process model using the idproc command, the value of sys. Integration is determined by whether the corresponding type string contains I.

NoiseTF

Coefficients of the noise transfer function.
sys.NoiseTF stores the coefficients of the numerator and the denominator polynomials for the noise transfer function $H(s)=N(s) / D(s)$.
sys. NoiseTF is a structure with fields num and den. Each field is a cell array of N_{y} row vectors, where N_{y} is the number of outputs of sys. These row vectors specify the coefficients of the noise transfer function numerator and denominator in order of decreasing powers of s.

Typically, the noise transfer function is automatically computed by the estimation function procest. You can specify a noise transfer function that procest uses as an initial value. For example:

```
NoiseNum = {[1 2.2]; [1 0.54]};
NoiseDen = {[1 1.3]; [1 2]};
NoiseTF = struct('num', {NoiseNum}, 'den', {NoiseDen});
sys = idproc({'p2'; 'p1di'}); % 2-output, 1-input process model
sys.NoiseTF = NoiseTF;
```

Each vector in sys.NoiseTF.num and sys.NoiseTF. den must be of length 3 or less (second-order in s or less). Each vector must start with 1. The length of a numerator vector must be equal to that of the corresponding denominator vector, so that $H(s)$ is always biproper.

Default: struct('num', \{num2cell(ones(Ny,1))\},'den', \{num2cell(ones(Ny,1))\})

Structure

Information about the estimable parameters of the idproc model.
sys. Structure includes one entry for each parameter in the model structure of sys. For example, if sys is of type 'P1D', then sys includes identifiable parameters Kp, Tp1, and Td. Correspondingly, sys.Structure.Kp, sys.Structure.Tp1, and sys.Structure.Td contain information about each of these parameters, respectively.

Each of these parameter entries in sys.Structure contains the following fields:

- Value - Parameter values. For example, sys.Structure.Kp.Value contains the initial or estimated values of the K_{p} parameter.

NaN represents unknown parameter values.

For SISO models, each parameter value property such as sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.Tp3 is an alias to the value of the property sys.Structure.Tp3.Value.

For MIMO models, sys.Kp\{i,j\} is an alias to sys.Structure(i,j).Kp.Value, and similarly for the other identifiable coefficient values.

- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.Kp.Minimum = 1 constrains the proportional gain to values greater than or equal to 1 .
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Logical value specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free $=$ false. For example, to fix the dead time to 5:
sys. $\mathrm{Td}=5$;
sys.Structure.Td.Free = false;
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

Structure also includes a field Integration that stores a logical array indicating whether each corresponding process model has an integrator. sys.Structure. Integration is an alias to sys. Integration.

For a MIMO model with Ny outputs and Nu input, Structure is an Ny-by-Nu array. The element Structure (i, j) contains information corresponding to the process model for the (i, j) input-output pair.

NoiseVariance

The variance (covariance matrix) of the model innovations e.
An identified model includes a white, Gaussian noise component $e(t)$. NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as procest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a N_{y}-by- N_{y} matrix, where N_{y} is the number of outputs in the system.

Report

Information about the estimation process.
Report contains the following fields:

- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and input offset, and their covariances.
- OptionsUsed - Options used during estimation (see procestOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idproc, OutputDelay is fixed to zero.

Ts

Sampling time. For idproc, Ts is fixed to zero because all idproc models are continuous time.

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to \{'measurements(1)';'measurements(2)'\}.

When you estimate a model using an iddata object, data, the software automatically sets OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

```
sys.InputGroup.measurement = [3 5];
```

creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ' '

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:
nominal_engine_rpm $=$ [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)
where sys is an array containing three identified models obtained at rpms 1000, 5000 and 10000 , respectively.

Default: []

```
See Also
idss | idtf | pem | procest | ssest | tfest
```


idresamp

Resample time-domain data by decimation or interpolation

Syntax

```
datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)
```


Description

datar = idresamp(data, R) resamples data on a new sample interval R and stores the resampled data as datar.
datar = idresamp(data, R,order, tol) filters the data by applying a filter of specified order before interpolation and decimation. Replaces R by a rational approximation that is accurate to a tolerance tol.
[datar,res_fact] = idresamp(data,R,order,tol) returns res_fact, which corresponds to the value of R approximated by a rational expression.

Input Arguments

data

Name of time-domain iddata object or a matrix of data. Can be input-output or time-series data.

Data must be sampled at equal time intervals.
R
Resampling factor, such that $R>1$ results in decimation and $R<1$ results in interpolation.

Any positive number you specify is replaced by the rational approximation, Q/P. order

Order of the filters applied before interpolation and decimation.
Default: 8
tol
Tolerance of the rational approximation for the resampling factor R.
Smaller tolerance might result in larger P and Q values, which produces more accurate answers at the expense of slower computation.

Default: 0.1

Output Arguments

datar

Name of the resampled data variable. datar class matches the data class, as specified.
res_fact
Rational approximation for the specified resampling factor R and tolerance tol.
Any positive number you specify is replaced by the rational approximation, Q / P, where the data is interpolated by a factor P and then decimated by a factor Q.

See Also
resample

idss

State-space model with identifiable parameters

Syntax

```
sys = idss(A,B,C,D)
sys = idss(A,B,C,D,K)
sys = idss(A,B,C,D,K,x0)
sys = idss(A,B,C,D,K,xO,Ts)
sys = idss( ___,Name,Value)
sys = idss(sys0)
sys = idss(sys0,'split')
```


Description

sys $=$ idss (A, B, C, D) creates a state-space model with identifiable parameters. A, B, C, and D are the initial values of the state-space matrices. By default, sys is discrete-time model with unspecified sampling time and no state disturbance element.
sys $=$ idss (A, B, C, D, K) creates a state-space model with a disturbance element given by the matrix K.
sys $=$ idss $(A, B, C, D, K, X 0)$ creates a state-space model with initial state values given by the vector x 0 .
sys $=$ idss ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K}, \mathrm{xO}, \mathrm{Ts}$) creates a state-space model with sampling time Ts.
Use Ts $=0$ to create a continuous-time model.
sys = idss(\qquad , Name, Value) creates a state-space model using additional options specified by one or more Name,Value pair arguments.
sys = idss(sys0) converts any dynamic system model, sys0, to idss model form.
sys = idss(sys0,'split') converts sys0 to idss model form, and treats the last $N y$ input channels of sys0 as noise channels in the returned model. sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs.

Object Description

An idss model represents a system as a continuous-time or discrete-time state-space model with identifiable (estimable) coefficients.

A state-space model of a system with input vector u, output vector y, and disturbance e takes the following form in continuous time:

$$
\begin{aligned}
\frac{d x(t)}{d t} & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

In discrete time, the state-space model takes the form:

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k]+K e[k] \\
y[k] & =C x[k]+D u[k]+e[k] .
\end{aligned}
$$

For idss models, the elements of the state-space matrices A, B, C, and D can be estimable parameters. The elements of the state disturbance K can also be estimable parameters. The idss model stores the values of these matrix elements in the a, b, c, d, and k properties of the model.

There are three ways to obtain an idss model.

- Estimate the idss model based on input-output measurements of a system, using n 4 sid or ssest. These estimation commands estimate the values of the estimable elements of the state-space matrices. The estimated values are stored in the a, b, c, d , and k properties of the resulting idss model. The Report property of the resulting model stores information about the estimation, such as handling of initial state values and options used in estimation.

When you obtain an idss model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as idssdata, getpar, or getcov.

- Create an idss model using the idss command.

You can create an idss model to configure an initial parameterization for estimation of a state-space model to fit measured response data. When you do so, you can specify constraints on one or more of the state-space matrix elements. For example, you
can fix the values of some elements, or specify minimum or maximum values for the free elements. You can then use the configured model as an input argument to an estimation command (n4sid or ssest) to estimate parameter values with those constraints.

- Convert an existing dynamic system model to an idss model using the idss command.

To configure an idss model in a desired form, such as a companion or modal form, use state transformation commands such as canon and ss2ss.

Examples

Create State-Space Model with Identifiable Parameters

Create a 4th-order SISO state-space model with identifiable parameters. Initialize the initial state values to 0.1 for all entries. Set the sampling time to 0.1 s as well.
$\mathrm{A}=\mathrm{blkdiag}\left([-0.1 \quad 0.4 ;-0.4-0.1],\left[\begin{array}{llll}-1 & 5 ; & -5 & -1\end{array}\right]\right)$;
$B=[1 ; \operatorname{zeros}(3,1)] ;$
$C=\left[\begin{array}{llll}1 & 0 & 1\end{array}\right] ;$
D = 0;
K = zeros(4,1);
$\mathrm{xO}=[0.1,0.1,0.1,0.1] ;$
Ts = 0.1;
sys $=$ idss(A,B,C,D,K,x0,Ts);
sys is a 4th-order, SISO idss model. The number of states and input-output dimensions are determined by the dimensions of the state-space matrices. By default, all entries in the matrices A, B, C, D, and K are identifiable parameters.

You can use sys to specify an initial parametrization for state-space model estimation with ssest or n4sid.

Specify Additional Attributes of State-Space Model

Create a 4th-order SISO state-space model with identifiable parameters. Name the input and output channels of the model, and specify minutes for the model time units.

You can use Name, Value pair arguments to specify additional model properties on model creation.

```
A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
```

$B=[1 ; \operatorname{zeros}(3,1)] ;$
$C=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$
D $=0$;
sys = idss(A,B,C,D,'InputName','Drive','TimeUnit','minutes');

To change or specify most attributes of an existing model, you can use dot notation. For example:
sys.OutputName = 'Torque';

Configure Identifiable Parameters of State-Space Model

Configure an idss model so that it has no state disturbance element and only the nonzero entries of the A matrix are estimable. Additionally, fix the values of the B matrix.

You can configure individual parameters of an idss model to specify constraints for state-space model estimation with ssest or n4sid.

Create an idss model.

```
A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
sys = idss(A,B,C,D,K,x0,0);
```

Setting all entries of K = 0 creates an idss model with no state disturbance element.
Use the Structure property of the model to fix the values of some of the parameters.

```
sys.Structure.a.Free = (A~=0);
sys.Structure.b.Free = false;
sys.Structure.k.Free = false;
```

The entries in sys.Structure.a.Free determine whether the corresponding entries in sys.a are free (identifiable) or fixed. The first line sets sys.Structure.a.Free to a logical matrix that is true wherever A is non-zero, and false everywhere else. Doing so fixes the value of the zero entries in sys.a.

The remaining lines fix all the values in sys. b and sys. k to the values you specified when you created the model.

Array of State-Space Models

Create an array of state-space models.
There are several ways to create arrays of state-space models:

- Direct array construction using n-dimensional state-space arrays
- Array-building by indexed assignment
- Array-building using the "stack" command
- Sampling an identified model using the "rsample" command

Create an array by providing n-dimensional arrays as an input argument to idss, instead of 2 -dimensional matrices.

A = rand (2,2,3,4);
sysarr = idss(A,[2;1],[1 1],0);
When you provide a multi-dimensional array to idss in place of one of the state-space matrices, the first two dimensions specify the numbers of states, inputs, or outputs of each model in the array. The remaining dimensions specify the dimensions of the array itself. A is a 2-by-2-by-3-by-4 array. Therefore, sysarr is a 3 -by- 4 array of idss models. Each model in sysarr has two states, specified by the first two dimensions of A. Further, each model in sysarr has the same B, C, and D values.

Create an array by indexed assignment.

```
sysarr = idss(zeros(1,1,2));
```

sysarr(:,:,1) = idss([4 -3;-2 0],[2;1],[11],0);
$\operatorname{sysar}(:,:, 2)=\operatorname{idss}(\operatorname{rand}(2), \operatorname{rand}(2,1), \operatorname{rand}(1,2), 1) ;$

The first command preallocates the array. The first two dimensions of the array are the I/O dimensions of each model in the array. Therefore, sysarr is a 2 -element vector of SISO models.

The remaining commands assign an idss model to each position in sysarr. Each model in an array must have the same I/O dimensions.

Add another model to sysarr using stack.
stack is an alternative to building an array by indexing.
sysarr = stack(1,sysarr,idss([1 -2;-4 9],[0;-1],[1 1],0));
This command adds another idss model along the first array dimension of sysarr. sysarr is now a 3-by- 1 array of SISO idss models

Input Arguments

A, B,C,D
Initial values of the state-space matrices.
For a system with N_{y} outputs, N_{u} inputs, and N_{x} states, specify initial values of the statespace matrix elements as follows:

- A $-N_{x}$-by- N_{x} matrix.
- B $-N_{x}$-by- N_{u} matrix.
- $\mathrm{C}-N_{y}$-by- N_{x} matrix.
- D $-N_{y}$-by- N_{u} matrix.

Use NaN for any matrix element whose initial value is not known.

K

Initial value of the state disturbance matrix.
Specify K as an N_{x}-by- N_{y} matrix.
Use NaN for any matrix element whose initial value is not known.
Default: N_{x}-by- N_{y} zero matrix.
x0
Initial state values.
Specify the initial condition as a column vector of N_{x} values.

Default: N_{x} column vector of zeros.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts = -1.

Default: - 1 (discrete-time model with unspecified sampling time)

sys0

Dynamic system.
Any dynamic system to convert to an idss model:

- When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If you want to translate the estimated parameter covariance during the conversion, use translatecov.
- When sys0 is a numeric (non-identified) model, the state-space data of sys0 define the A, B, C, and D matrices of the converted model. The disturbance matrix K is fixed to zero. The NoiseVariance value defaults to eye (Ny), where Ny is the number of outputs of sys.

For the syntax sys = idss(sys0, 'split'), sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs. Finally, the subsystem sys0 (: , Ny+1: $\mathrm{Ny}+\mathrm{Nu}$) must contain a non-zero feedthrough term (the subsystem must be biproper).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Use Name,Value arguments to specify additional properties of idss models during model creation. For example, idss(A, B, C, D, 'InputName', 'Voltage') creates an idss model with the InputName property set to Voltage.

Properties

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
idss object properties include:
a,b, c, d
Values of state-space matrices.

- a - State matrix A, an N_{x}-by- N_{x} matrix.
- b $-N_{x}$-by- N_{u} matrix.
- c $-N_{y}$-by- N_{x} matrix.
- $\mathrm{d}-N_{y}$-by- N_{u} matrix.

If you create an idss model sys using the idss command, sys.a, sys.b, sys.c, and sys.d contain the initial values of the state-space matrices that you specify with the A,B,C,D input arguments.

If you obtain an idss model sys by identification using ssest or n4sid, then sys.a, sys.b, sys.c, and sys.d contain the estimated values of the matrix elements.

For an idss model sys, each property sys.a, sys.b, sys.c, and sys.d is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value.

k

Value of state disturbance matrix K, an N_{x}-by- N_{y} matrix.
If you create an idss model sys using the idss command, sys. k contains the initial values of the state-space matrices that you specify with the K input argument.

If you obtain an idss model sys by identification using ssest or n4sid, then sys.k contains the estimated values of the matrix elements.

For an idss model sys, sys. k is an alias to the value of the property sys.Structure.k.Value.

Default: N_{x}-by- N_{y} zero matrix.

StateName

State names. For first-order models, set StateName to a string. For models with two or more states, set StateName to a cell array of strings. Use an empty string ' ' for unnamed states.

Default: Empty string ' ' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is expressed in. For first-order models, set StateUnit to a string. For models with two or more states, set StateUnit to a cell array of strings. StateUnit has no effect on system behavior.

Default: Empty string ' ' for all states

Structure

Information about the estimable parameters of the idss model. Structure.a, Structure.b, Structure.c, Structure.d, and Structure.k contain information about the A, B, C, D, and K matrices, respectively. Each contains the following fields:

- Value - Parameter values. For example, sys.Structure.a.Value contains the initial or estimated values of the A matrix.

NaN represents unknown parameter values.
Each property sys.a, sys.b, sys.c, and sys.d is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value

- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.k.Minimum $=0$ constrains all entries in the K matrix to be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free $=$ false. For example, if A is a 3 -by- 3 matrix, sys.Structure.a.Free $=$ eyes(3) fixes all of the off-diagonal entries in A, to the values specified in sys.Structure.a.Value. In this case, only the diagonal entries in A are estimable.
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

NoiseVariance

The variance (covariance matrix) of the model innovations e.
An identified model includes a white, Gaussian noise component $e(t)$. NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as ssest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a N_{y}-by- N_{y} matrix, where N_{y} is the number of outputs in the system.

Report

Information about the estimation process.
Report contains the following fields:

- N4Weight - Subspace algorithm option value used by n4sid estimator (see n4sidOptions).
- N4Horizon - Forward and backward prediction horizons used by n4sid (see n4sidOptions).
- InitialState - Whether initial state values were estimated or fixed.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and initial states, and their covariances.
- OptionsUsed - Options used during estimation (see ssestOptions or n4sidOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion. Available only when the model is estimated using ssest or pem.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

OutputDelay

Output delays.
For identified systems, like idss, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: - 1 (discrete-time model with unspecified sampling time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

creates input groups named controls and noise that include input channels 1, 2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to \{'measurements(1)';'measurements(2)'\}.

When you estimate a model using an iddata object, data, the software automatically sets OutputName to data.OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.InputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ' '

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:

```
nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGríd = struct('rpm', nominal_engine_rpm)
```

where sys is an array containing three identified models obtained at rpms 1000,5000 and 10000 , respectively.

Default: []

More About

- "Dynamic System Models"

See Also

idgrey | idpoly | idproc | idssdata | idtf | n4sid | pem | ssest | ssestOptions | translatecov

idssdata

State-space data of identified system

Syntax

```
[A,B,C,D,K] = idssdata(sys)
[A,B,C,D,K,x0] = idssdata(sys)
[A,B,C,D,K, x0, dA, dB, dC, dD, dK, dx0] = idssdata(sys)
[A,B,C,D,K,___] = idssdata(sys,j1,...,jN)
[A,B,C,D,K,___] = idssdata(sys,'cell')
```


Description

$[A, B, C, D, K]=$ idssdata(sys) returns the A, B, C, D and K matrices of the identified state-space model sys.
$[A, B, C, D, K, x 0]=$ idssdata(sys) returns the initial state values, $x 0$.
$[A, B, C, D, K, x 0, d A, d B, d C, d D, d K, d x 0]=$ idssdata(sys) returns the uncertainties in the system matrices for sys.
$[A, B, C, D, K, \ldots]=i d s s d a t a(s y s, j 1, \ldots, j N)$ returns data for the $j 1, \ldots, j n$ entries in the model array sys.
$[A, B, C, D, K, \ldots]=i d s s d a t a(s y s$, 'cell') returns data for all the entries in the model array sys as separate cells in cell arrays.

Input Arguments

sys

Identified model.
If sys is not an identified state-space model (idss or idgrey), then it is first converted to an idss model. This conversion results in a loss of the model uncertainty information.
sys can be an array of identified models.

j1,...,jN

Integer indices of N entries in the array sys of identified systems.

Output Arguments

A, B, C, D,K
State-space matrices that represent sys as:

$$
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+\operatorname{Ke}[k] ; x[0]=x 0 ; \\
& y[k]=C x[k]+D u[k]+e[k] ;
\end{aligned}
$$

If sys is an array of identified models, then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K}$ are multi-dimension arrays. To access the state-space matrix, say A, for the k-th entry of sys, use $\mathrm{A}(:,:, k)$.

x0

Initial state.
If sys is an idss or idgrey model, then x 0 is the value obtained during estimation. It is also stored using the Report. Parameters property of sys.

For other model types, $x 0$ is zero.
If sys is an array of identified models, then $x 0$ contains a column for each entry in sys.
dA, dB, dC, dD, dK
Uncertainties associated with the state-space matrices A,B,C,D,K.
The uncertainty matrices represents 1 standard deviation of uncertainty.
If sys is an array of identified models, then $\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}, \mathrm{dK}$ are multi-dimension arrays. To access the state-space matrix, say A, for the k-th entry of sys, use $\mathrm{A}(:,:, k)$.
dx0
Uncertainty associated with the initial state.
dx0 represents 1 standard deviation of uncertainty.
If sys is an array of identified models, then dx0 contains a column for each entry in sys.

Examples

Obtain Identified State-Space Matrices

Obtain the identified state-space matrices for a model estimated from data.
Identify a model using data.

```
load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);
```

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds. sys is an idss model representing the identified system.

Obtain identified state-space matrices of sys.
[A, B, C, D, K] = idssdata(sys);

Obtain Initial State of Identified Model

Obtain the initial state associated with an identified model.
Identify a model using data.
load icEngine.mat
data $=$ iddata($y, u, 0.04)$;
sys $=$ n4sid(data,4, 'InputDelay',2);
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds. sys is an idss model representing the identified system.

Obtain the initial state associated with sys.

$$
[A, B, C, D, K, x 0]=\text { idssdata(sys); }
$$

A, B, C, D and K represent the state-space matrices of the identified model sys. $x 0$ is the initial state identified for sys.

Obtain Uncertainty Data of State-Space Matrices of Identified Model

Obtain the uncertainty matrices of the state-space matrices of an identified model.
Identify a model using data.

```
load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);
```

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an idss model representing the identified system.
Obtain the uncertainty matrices associated with the state-space matrices of sys.
$[A, B, C, D, K, x 0, d A, d B, d C, d D, d x 0]=$ idssdata(sys);
$d A, d B, d C, d D$ and $d K$ represent the uncertainty associated with the state-space matrices of the identified model sys. dx 0 represents the uncertainty associated with the estimated initial state.

Obtain State-Space Matrices for Multiple Identified Models

Obtain the state-space matrices for multiple models from an array of identified models.
Identify multiple models using data.

```
load icEngine.mat
data = iddata(y,u,0.04);
sys2 = n4sid(data,2,'InputDelay',2);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys2,sys3,sys4);
```

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an array of idss models. The first entry of sys is a second-order identified system. The second and third entries of sys are third- and fourth-order identified systems, respectively.

Obtain the state-space matrices for the first and third entries of sys.

$$
\begin{aligned}
& {[A, B, C, D, K, x 0]=\text { idssdata(sys,1); }} \\
& {[A, B, C, D, K, x 0]=\text { idssdata(sys,3); }}
\end{aligned}
$$

Obtain State-Space Matrices for Identified Model as Cell Array

Obtain the state-space matrices of an array of identified models in cell arrays.
Identify multiple models using data.

```
load icEngine.mat
data = iddata(y,u,0.04);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys3,sys4);
```

data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an array of idss models. The first entry of sys is a third-order identified system and the second entry is a fourth-order identified system.

Obtain the state-space matrices of sys in cell arrays.

```
[A,B,C,D,K,x0] = idssdata(sys,'cell');
```

A, B, C, D and K are cell arrays containing the state-space matrices of the individual entries of the identified model array sys. x0 is a cell array containing the estimated initial state of the individual entries of the identified model array sys.

```
See Also
idss | polydata | ssdata | tfdata | zpkdata
```


idff

Transfer function model with identifiable parameters

Syntax

```
sys = idtf(num,den)
sys = idtf(num,den,Ts)
sys = idtf(
```

\qquad

``` , Name, Value)
sys = idtf(sys0)
```


Description

sys = idtf(num, den) creates a continuous-time transfer function with identifiable parameters (an idtf model). num specifies the current values of the transfer function numerator coefficients. den specifies the current values of the transfer function denominator coefficients.
sys = idtf(num,den,Ts) creates a discrete-time transfer function with identifiable parameters. Ts is the sampling time.
sys = idtf(__ , Name, Value) creates a transfer function with properties specified by one or more Name, Value pair arguments.
sys = idtf(sys0) converts any dynamic system model, sys0, to idtf model form.

Object Description

An idtf model represents a system as a continuous-time or discrete-time transfer function with identifiable (estimable) coefficients.

A SISO transfer function is a ratio of polynomials with an exponential term. In continuous time,

$$
G(s)=e^{-\tau s} \frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{s^{m}+a_{m-1} s^{m-1}+\ldots+a_{0}} .
$$

In discrete time,

$$
G\left(z^{-1}\right)=z^{-k} \frac{b_{n} z^{-n}+b_{n-1} z^{-n+1}+\ldots+b_{0}}{z^{-m}+a_{m-1} z^{-m+1}+\ldots+a_{0}}
$$

In discrete time, z^{-k} represents a time delay of $k T_{s}$, where T_{s} is the sampling time.
For idtf models, the denominator coefficients a_{0}, \ldots, a_{m-1} and the numerator coefficients b_{0}, \ldots, b_{n} can be estimable parameters. (The leading denominator coefficient is always fixed to 1.) The time delay τ (or kin discrete time) can also be an estimable parameter. The idtf model stores the polynomial coefficients a_{0}, \ldots, a_{m-1} and b_{0}, \ldots, b_{n} in the den and num properties of the model, respectively. The time delay τ or k is stored in the ioDelay property of the model.

A MIMO transfer function contains a SISO transfer function corresponding to each input-output pair in the system. For idtf models, the polynomial coefficients and transport delays of each input-output pair are independently estimable parameters.

There are three ways to obtain an idtf model.

- Estimate the idtf model based on input-output measurements of a system, using tfest. The tfest command estimates the values of the transfer function coefficients and transport delays. The estimated values are stored in the num, den, and ioDelay properties of the resulting idtf model. The Report property of the resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.

When you obtain an idtf model by estimation, you can extract estimated coefficients and their uncertainties from the model. To do so, use commands such as tfdata, getpar, or getcov.

- Create an idtf model using the idtf command.

You can create an idtf model to configure an initial parameterization for estimation of a transfer function to fit measured response data. When you do so, you can specify constraints on such values as the numerator and denominator coefficients and transport delays. For example, you can fix the values of some parameters, or specify minimum or maximum values for the free parameters. You can then use the configured model as an input argument to tfest to estimate parameter values with those constraints.

- Convert an existing dynamic system model to an idtf model using the idtf command.

Note: Unlike idss and idpoly, idtf uses a trivial noise model and does not parameterize the noise.

So, $H=1$ in $y=G u+H e$.

Examples

Continuous-Time Transfer Function

Specify a continuous-time, single-input, single-output (SISO) transfer function with estimable parameters. The initial values of the transfer function are:

$$
G(s)=\frac{s+4}{s^{2}+20 s+5}
$$

```
num = [1 4];
den = [1 20 5];
G = idtf(num,den);
```

G is an idtf model. num and den specify the initial values of the numerator and denominator polynomial coefficients in descending powers of s. The numerator coefficients having initial values 1 and 4 are estimable parameters. The denominator coefficient having initial values 20 and 5 are also estimable parameters. The leading denominator coefficient is always fixed to 1 .

You can use G to specify an initial parametrization for estimation with tfest.

Transfer Function with Known Input Delay and Specified Attributes

Specify a continuous-time, SISO transfer function with known input delay. The transfer function initial values are given by:

$$
G(s)=e^{-5.8 s} \frac{5}{s+5}
$$

Label the input of the transfer function with the name 'Voltage' and specify the input units as volt.

Use Name, Value input pairs to specify the delay, input name, and input unit.

```
num = 5;
den = [1 5];
input_delay = 5.8;
input_name = 'Voltage';
input_unit = 'volt';
G = idtf(num,den,'InputDelay',input_delay,...
    'InputName',input_name,'InputUnit',input_unit);
```

G is an idtf model. You can use G to specify an initial parametrization for estimation with tfest. If you do so, model properties such as InputDelay, InputName, and InputUnit are applied to the estimated model. The estimation process treats InputDelay as a fixed value. If you want to estimate the delay and specify an initial value of 5.8 s , use the ioDelay property instead.

Discrete-Time Transfer Function

Specify a discrete-time SISO transfer function with estimable parameters. The initial values of the transfer function are:

$$
H(z)=\frac{z-0.1}{z+0.8}
$$

Specify the sampling time as 0.2 seconds.

```
num = [1 -0.1];
den = [1 0.8];
Ts = 0.2
H = idtf(num,den,Ts);
```

num and den are the initial values of the numerator and denominator polynomial coefficients. For discrete-time systems, specify the coefficients in ascending powers of z^{-1}.

Ts specifies the sampling time for the transfer function as 0.2 seconds.
H is an idtf model. The numerator and denominator coefficients are estimable parameters (except for the leading denominator coefficient, which is fixed to 1).

MIMO Discrete-Time Transfer Function

Specify a discrete-time, two-input, two-output transfer function. The initial values of the MIMO transfer function are:

$$
H(z)=\left[\begin{array}{cc}
\frac{1}{z+0.2} & \frac{z}{z+0.7} \\
\frac{-z+2}{z-0.3} & \frac{3}{z+0.3}
\end{array}\right]
$$

Specify the sampling time as 0.2 seconds.

```
nums = {1,[1,0];[-1,2],3};
dens = {[1,0.2],[1,0.7];[1,-0.3],[1,0.3]};
Ts = 0.2
H = idtf(nums,dens,Ts);
```

nums and dens specify the initial values of the coefficients in cell arrays. Each entry in the cell array corresponds to the numerator or denominator of the transfer function of one input-output pair. For example, the first row of nums is $\{1,[1,0]\}$. This cell array specifies the numerators across the first row of transfer functions in H. Likewise, the first row of dens, $\{[1,0.2],[1,0.7]\}$, specifies the denominators across the first row of H .

Ts specifies the sampling time for the transfer function as 0.2 seconds.
H is an idtf model. All of the polynomial coefficients are estimable parameters, except for the leading coefficient of each denominator polynomial. These coefficients are always fixed to 1 .

Specify $q^{\wedge}-1$ as Transfer Function Variable

Specify the following discrete-time transfer function in terms of $q^{\wedge}-1$:

$$
H\left(q^{-1}\right)=\frac{1+.4 q^{-1}}{1+.1 q^{-1}-.3 q^{-2}}
$$

Specify the sampling time as 0.1 seconds.

```
num = [1 .4];
den = [1 . 1 -. 3];
Ts = 0.1;
convention_variable = 'q^-1';
H = idtf(num,den,Ts,'Variable',convention_variable);
```

Use a Name, Value pair argument to specify the variable $q^{\wedge}-1$.
num and den are the numerator and denominator polynomial coefficients in ascending powers of q^{-1}.

Ts specifies the sampling time for the transfer function as 0.1 seconds.
H is an idtf model.

Gain Matrix Transfer Function

Specify a transfer function with estimable coefficients whose initial value is the static gain matrix:

$$
\begin{aligned}
& H(s)=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
3 & 0 & 2
\end{array}\right] \\
& \text { M = [1 0 1; 1 1 0; 3 0 2]; } \\
& H=\operatorname{idtf}(M) \text {; }
\end{aligned}
$$

H is an idtf model that describes a three input $(\mathrm{Nu}=3)$, three output $(\mathrm{Ny}=3)$ transfer function. Each input/output channel is an estimable static gain. The initial values of the gains are given by the values in the matrix M .

Convert Identifiable State-Space Model to Identifiable Transfer Function

Convert a state-space model with identifiable parameters to a transfer function with identifiable parameters.

Convert the following identifiable state-space model to an identifiable transfer function.

$$
\begin{aligned}
& \tilde{x}(t)=\left[\begin{array}{cc}
-0.2 & 0 \\
0 & -0.3
\end{array}\right] x(t)+\left[\begin{array}{c}
-2 \\
4
\end{array}\right] u(t)+\left[\begin{array}{l}
.1 \\
.2
\end{array}\right] e(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

$A=[-0.2,0 ; 0,-0.3] ; B=[2 ; 4] ; C=[1,1] ; D=0 ; K=[.1 ; 2] ;$
sys0 = idss(A,B,C,D,K, 'NoiseVariance', 0.1);
sys = idtf(sys0);
A, B, C, D and K are matrices that specify sys0, an identifiable state-space model with a noise variance of 0.1.
sys $=$ idtf(sys0) creates an idtf model, sys.

Obtain a Transfer Function by Estimation

Identify a transfer function containing a specified number of poles for given data.
Load time-domain system response data and use it to estimate a transfer function for the system.

```
load iddata1 z1;
np = 2;
sys = tfest(z1,np);
```

$z 1$ is an iddata object that contains time-domain, input-output data.
np specifies the number of poles in the estimated transfer function.
sys is an idtf model containing the estimated transfer function.
To see the numerator and denominator coefficients of the resulting estimated model sys, enter:
sys.num
sys.den
To view the uncertainty in the estimates of the numerator and denominator and other information, use tfdata.

Obtain a Transfer Function with Prior Knowledge of Model Structure and Constraints

Identify a transfer function for given data by providing its expected structure and coefficient constraints

Load time domain data.
load iddata1 $\mathrm{z1}$;
z1.y = cumsum(z1.y);
cumsum integrates the output data of $z 1$. The estimated transfer function should therefore contain an integrator.

Create a transfer function model with the expected structure.
init_sys = idtf([[100 1500],[110 10 0 10$)$;
int_sys is an idtf model with three poles and one zero. The denominator coefficient for the $\mathbf{s}^{\wedge} 0$ term is zero. Therefore, int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer function model. To do so, configure fields in the Structure property:

```
init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;
```

The constraints specify that the numerator and denominator coefficients are nonnegative. Additionally, the last element of the denominator coefficients (associated with the $s^{\wedge} 0$ term) is not an estimable parameter. This constraint forces one of the estimated poles to be at $\mathrm{s}=0$.

Create an estimation option set that specifies using the Levenberg-Marquardt search method.

```
opt = tfestOptions('SearchMethod', 'lm');
```

Estimate a transfer function for z 1 using init_sys and the estimation option set.

```
sys = tfest(z1,init_sys,opt);
```

tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally, the estimation is constrained by the constraints you specify in the Structure property of init_sys. The resulting idtf model sys contains the parameter values that result from the estimation.

Array of Transfer Function Models

Create an array of transfer function models with identifiable coefficients. Each transfer function in the array is of the form:

$$
H(s)=\frac{a}{s+a}
$$

The initial value of the coefficient a varies across the array, from 0.1 to 1.0 , in increments of 0.1.

```
H = idtf(zeros(1,1,10));
for k = 1:10
    num = k/10;
```

```
    den = [1 k/10];
    H(:,:,k) = idtf(num,den);
end
```

The first command preallocates a one-dimensional, 10 -element array, H , and fills it with empty idtf models.

The first two dimensions of a model array are the output and input dimensions. The remaining dimensions are the array dimensions. $\mathrm{H}(:,:, \mathrm{k})$ represents the kth model in the array. Thus, the for loop replaces the kth entry in the array with a transfer function whose coefficients are initialized with $a=k / 10$.

Input Arguments

num

Initial values of transfer function numerator coefficients.
For SISO transfer functions, specify the initial values of the numerator coefficients num as a row vector. Specify the coefficients in order of:

- Descending powers of s or p (for continuous-time transfer functions)
- Ascending powers of z^{-1} or q^{-1} (for discrete-time transfer functions)

Use NaN for any coefficient whose initial value is not known.
For MIMO transfer functions with Ny outputs and Nu inputs, num is a Ny-by-Nu cell array of numerator coefficients for each input/output pair.

den

Initial values of transfer function denominator coefficients.
For SISO transfer functions, specify the initial values of the denominator coefficients den as a row vector. Specify the coefficients in order of:

- Descending powers of s or p (for continuous-time transfer functions)
- Ascending powers of z^{-1} or q^{-1} (for discrete-time transfer functions)

The leading coefficient in den must be 1 . Use NaN for any coefficient whose initial value is not known.

For MIMO transfer functions with Ny outputs and Nu inputs, den is a Ny-by-Nu cell array of denominator coefficients for each input/output pair.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: 0 (continuous time)

sys0

Dynamic system.
Any dynamic system to convert to an idtf model.
When sys0 is an identified model, its estimated parameter covariance is lost during conversion. If you want to translate the estimated parameter covariance during the conversion, use translatecov.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name,Value arguments to specify additional properties of idtf models during model creation. For example, idtf (num, den, 'InputName', 'Voltage') creates an idtf model with the InputName property set to Voltage.

Properties

idtf object properties include:

num

Values of transfer function numerator coefficients.
If you create an idtf model sys using the idtf command, sys. num contains the initial values of numerator coefficients that you specify with the num input argument.

If you obtain an idtf model by identification using tfest, then sys. num contains the estimated values of the numerator coefficients.

For an idtf model sys, the property sys.num is an alias for the value of the property sys.Structure.num. Value.

For SISO transfer functions, the values of the numerator coefficients are stored as a row vector in order of:

- Descending powers of s or p (for continuous-time transfer functions)
- Ascending powers of z^{-1} or q^{-1} (for discrete-time transfer functions)

Any coefficient whose initial value is not known is stored as NaN .
For MIMO transfer functions with Ny outputs and Nu inputs, num is a Ny-by-Nu cell array of numerator coefficients for each input/output pair.

den

Values of transfer function denominator coefficients.
If you create an idtf model sys using the idtf command, sys.den contains the initial values of denominator coefficients that you specify with the den input argument.

If you obtain an idtf model sys by identification using tfest, then sys.den contains the estimated values of the denominator coefficients.

For an idtf model sys, the property sys.den is an alias for the value of the property sys.Structure.den.Value.

For SISO transfer functions, the values of the denominator coefficients are stored as a row vector in order of:

- Descending powers of s or p (for continuous-time transfer functions)
- Ascending powers of z^{-1} or q^{-1} (for discrete-time transfer functions)

The leading coefficient in den is fixed to 1 . Any coefficient whose initial value is not known is stored as NaN .

For MIMO transfer functions with Ny outputs and Nu inputs, den is a Ny-by-Nu cell array of denominator coefficients for each input/output pair.

Variable

String specifying the transfer function display variable. Variable requires one of the following values:

- 's'—Default for continuous-time models
- 'p'—Equivalent to 's'
- ' $z^{\wedge}-1^{\prime}$ ——Default for discrete-time models
- ' $q^{\wedge}-1^{\prime}$ —Equivalent to ${ }^{\prime} z^{\wedge}-1$ '

The value of Variable is reflected in the display, and also affects the interpretation of the num and den coefficient vectors for discrete-time models. For Variable $={ }^{\prime} z^{\wedge}-1$ ' or ' q ^-1', the coefficient vectors are ordered as ascending powers of the variable.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

If you create an idtf model sys using the idtf command, sys.ioDelay contains the initial values of the transport delay that you specify with a Name, Value argument pair.

If you obtain an idtf model sys by identification using tfest, then sys.ioDelay contains the estimated values of the transport delay.

For an idtf model sys, the property sys.ioDelay is an alias for the value of the property sys.Structure.ioDelay.Value.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport are expressed as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay as a Ny-by-Nu array. Each entry of this array is a numerical value representing the transport delay for the
corresponding input/output pair. You can set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

Structure

Information about the estimable parameters of the idtf model. Structure. num, Structure.den, and Structure.ioDelay contain information about the numerator coefficients, denominator coefficients, and transport delay, respectively. Each contains the following fields:

- Value - Parameter values. For example, sys.Structure. num. Value contains the initial or estimated values of the numerator coefficients.

NaN represents unknown parameter values. For denominators, the value of the leading coefficient, specified by sys.Structure.den.Value(1) is fixed to 1 .

For SISO models, sys.num, sys.den, and sys.ioDelay are aliases for sys.Structure.num.Value, sys.Structure.den.Value, and sys.Structure.ioDelay.Value, respectively.

For MIMO models, sys.num $\{i, j\}$ is an alias for sys.Structure (i,j).num.Value, and sys.den\{i,j\} is an alias for sys.Structure (i, j).den.Value. Additionally, sys.ioDelay (i, j) is an alias for sys.Structure(i,j).ioDelay.Value

- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.ioDelay.Minimum $=0.1$ constrains the transport delay to values greater than or equal to 0.1.
sys.Structure.ioDelay.Minimum must be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free = false. For example, sys.Structure.den.Free = false fixes all of the denominator coefficients in sys to the values specified in sys.Structure.den.Value.

For denominators, the value of Free for the leading coefficient, specified by sys.Structure.den.Free(1), is always false (the leading denominator coefficient is always fixed to 1).

- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

For a MIMO model with Ny outputs and Nu input, Structure is an Ny-by-Nu array. The element Structure (i, j) contains information corresponding to the transfer function for the (i, j) input-output pair.

NoiseVariance

The variance (covariance matrix) of the model innovations e.
An identified model includes a white, Gaussian noise component $e(t)$. NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as $t f e s t)$ determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a N_{y}-by- N_{y} matrix, where N_{y} is the number of outputs in the system.

Report

Information about the estimation process.
Report contains the following fields:

- InitMethod - Method used to initialize model coefficients before iterative prediction error minimization
- N4Weight - Subspace algorithm option value used by n4sidestimator (see n4sidOptions)
- N4Horizon - Forward and backward prediction horizons used by n4sid (see n4sidOptions)
- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error
- Parameters - Estimated values of model parameters and their covariance
- OptionsUsed - Options used during estimation (see tfestOptions)
- RandState - Random number stream state at start of estimation
- Status - Whether model was obtained by construction, estimated, or modified after estimation
- Method - Name of estimation method used
- DataUsed - Attributes of data used for estimation, such as name and sampling time
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay = 3 means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Estimation treats InputDelay as a fixed constant of the model. Estimation uses the ioDelay property for estimating time delays. To specify initial values and constraints for estimation of time delays, use sys.Structure.ioDelay.

Default: 0 for all input channels

OutputDelay

Output delays.
For identified systems, like idtf, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts $=-1$.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: 0 (continuous time)

TimeUnit

String representing the unit of the time variable. This property specifies the units for the time variable, the sampling time Ts, and any time delays in the model. Use any of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model. For a multiinput model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
When you estimate a model using an iddata object, data, the software automatically sets InputName to data. InputName.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a singleinput model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell array of strings. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [12];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output model. For a multioutput model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names to automatically expand to \{'measurements(1)';'measurements(2)'\}.

When you estimate a model using an iddata object, data, the software automatically sets OutputName to data. OutputName.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For a single-output model, set OutputUnit to a string. For a multi-output model, set OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```


sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:

```
sys('measurement',:)
```

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ' '

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{ \}

UserData

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For arrays of identified linear (IDLTI) models that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, if you collect data at various operating points of a system, you can identify a model for each operating point separately and then stack the results together into a single system array. You can tag the individual models in the array with information regarding the operating point:
nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm', nominal_engine_rpm)
where sys is an array containing three identified models obtained at rpms 1000, 5000 and 10000 , respectively.

Default: []

More About

- "Dynamic System Models"

See Also

getcov | getpar | idfrd|idpoly | idproc | idss | oe \| tfdata | tfest | translatecov

ifft

Transform iddata objects from frequency to time domain

Syntax

```
dat = ifft(Datf)
```


Description

ifft transforms a frequency-domain iddata object to the time domain. It requires the frequencies on Datf to be equally spaced from frequency 0 to the Nyquist frequency. This means that if there are N frequencies in Datf and the time sampling interval is Ts , then

Datf.Frequency $=[0: d f: F]$, where F is $\mathrm{pi} / T s$ if N is odd and $F=p i / T s *(1-1 / N)$ if N is even.

See Also

iddata | fft

impulse

Impulse response plot of dynamic system; impulse response data

Syntax

```
impulse(sys)
impulse(sys,Tfinal)
impulse(sys,t)
impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,Tfinal)
impulse(sys1,sys2,...,sysN,t)
[y,t] = impulse(sys)
[y,t] = impulse(sys,Tfinal)
y = impulse(sys,t)
[y,t,x] = impulse(sys)
[y,t,x,ysd] = impulse(sys)
```


Description

impulse calculates the unit impulse response of a "dynamic system model". For continuous-time dynamic systems, the impulse response is the response to a Dirac input $\delta(t)$. For discrete-time systems, the impulse response is the response to a unit area pulse of length Ts and height 1 /Ts, where Ts is the sampling time of the system. (This pulse approaches $\delta(t)$ as Ts approaches zero.) For state-space models, impulse assumes initial state values are zero.
impulse (sys) plots the impulse response of the dynamic system model sys. This model can be continuous or discrete, and SISO or MIMO. The impulse response of multi-input systems is the collection of impulse responses for each input channel. The duration of simulation is determined automatically to display the transient behavior of the response.
impulse (sys, Tfinal) simulates the impulse response from $t=0$ to the final time t $=$ Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (Ts =-1), impulse interprets Tfinal as the number of sampling periods to simulate.
impulse (sys, t) uses the user-supplied time vector t for simulation. Express t in the system time units, specified in the TimeUnit property of sys. For discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuoustime models, t should be of the form Ti:dt:Tf, where $d t$ becomes the sample time of a discrete approximation to the continuous system (see "Algorithms" on page 1-543). The impulse command always applies the impulse at $\mathrm{t}=0$, regardless of Ti .

To plot the impulse responses of several models sys1,..., sysN on a single figure, use:

```
impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2, ...,sysN,Tfinal)
impulse(sys1,sys2,...,sysN,t)
```

As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,

```
impulse(sys1,'y:',sys2,'g--')
```

See "Plotting and Comparing Multiple Systems" and the bode entry in this section for more details.

When invoked with output arguments:

```
[y,t] = impulse(sys)
[y,t] = impulse(sys,Tfinal)
y = impulse(sys,t)
```

impulse returns the output response y and the time vector t used for simulation (if not supplied as an argument to impulse). No plot is drawn on the screen. For single-input systems, y has as many rows as time samples (length of t), and as many columns as outputs. In the multi-input case, the impulse responses of each input channel are stacked up along the third dimension of y. The dimensions of y are then

For state-space models only:
[y,t,x] = impulse(sys)
(length of $t) \times$ (number of outputs) \times (number of inputs)
and $y(:,:, j)$ gives the response to an impulse disturbance entering the j th input channel. Similarly, the dimensions of x are
(length of $t) \times$ (number of states) \times (number of inputs)
[$y, t, x, y s d]=$ impulse(sys) returns the standard deviation YSD of the response Y of an identified system SYS. YSD is empty if SYS does not contain parameter covariance information.

Examples

Impulse Response Plot of Second-Order State-Space Model

Plot the impulse response of the second-order state-space model

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

$\mathrm{a}=\left[\begin{array}{cc}-0.5572 & -0.7814 ; 0.7814 \\ 0\end{array}\right]$;
b $=$ [1 -1;0 2];
$c=\left[\begin{array}{ll}1.9691 & 6.4493\end{array}\right] ;$
sys $=s s(a, b, c, 0)$;
impulse(sys)

Impulse Response

The left plot shows the impulse response of the first input channel, and the right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by
[y,t] = impulse(sys);
Because this system has two inputs, y is a 3-D array with dimensions

```
size(y)
ans =
    139 1 2
```

(the first dimension is the length of t). The impulse response of the first input channel is then accessed by

```
ch1 = y(:,:,1);
```

size(ch1)
ans $=$
1391

Impulse Data from Identified System

Fetch the impulse response and the corresponding 1 std uncertainty of an identified linear system .

```
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));
z = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(z, 'InputName', 'Voltage', 'InputUnit', 'V');
set(z, 'OutputName', {'Angular position', 'Angular velocity'});
set(z, 'OutputUnit', {'rad', 'rad/s'});
set(z, 'Tstart', 0, 'TimeUnit', 's');
model = tfest(z,2);
[y,t,~,ysd] = impulse(model,2);
% Plot 3 std uncertainty
subplot(211)
plot(t,y(:,1), t,y(:,1)+3*ysd(:,1),'k:', t,y(:,1)-3*ysd(:,1),'k:')
subplot(212)
plot(t,y(:,2), t,y(:,2)+3*ysd(:,2),'k:', t,y(:,2)-3*ysd(:,2),'k:')
```


Limitations

The impulse response of a continuous system with nonzero D matrix is infinite at $t=0$. impulse ignores this discontinuity and returns the lower continuity value Cb at $t=0$.

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Algorithms

Continuous-time models are first converted to state space. The impulse response of a single-input state-space model

$$
\begin{aligned}
\dot{x} & =A x+b u \\
y & =C x
\end{aligned}
$$

is equivalent to the following unforced response with initial state b.

$$
\begin{aligned}
\dot{x} & =A x, \quad x(0)=b \\
y & =C x
\end{aligned}
$$

To simulate this response, the system is discretized using zero-order hold on the inputs. The sampling period is chosen automatically based on the system dynamics, except when a time vector $t=0: d t: T f$ is supplied ($d t$ is then used as sampling period).

See Also

ltiview | step | initial| lsim | impulseest

impulseest

Nonparameteric impulse response estimation

Syntax

```
sys = impulseest(data)
sys = impulseest(data,N)
sys = impulseest(data,N,NK)
sys = impulseest(___,options)
```


Description

sys = impulseest(data) estimates an impulse response model, sys, using time- or frequency-domain data, data. The model order (number of nonzero impulse response coefficients) is determined automatically using persistence of excitation analysis on the input data.
sys = impulseest (data, N) estimates an Nth order impulse response model, corresponding to the time range $0: T s:(N-1)^{*} T s$, where Ts is the data sampling time.
sys $=$ impulseest (data, $N, N K$) specifies a transport delay of $N K$ samples in the estimated impulse response.
sys = impulseest(__ , options) specifies estimation options using the options set options.

Use nonparametric impulse response to analyze data for feedback effects, delays and significant time constants.

Input Arguments

data

Estimation data with at least one input signal and nonzero sample time.
For time domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:

- Frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

N

Order of the FIR model. Must be one of the following:

- A positive integer.

For data containing $N u$ inputs and $N y$ outputs, you can also specify N as an $N y$-by- $N u$ matrix of positive integers, such that $N(i, j)$ represents the length of impulse response from input j to output i.

- [] - Determines the order automatically using persistence of excitation analysis on the input data.

NK

Transport delay in the estimated impulse response, specified as a scalar integer. For data containing $N u$ inputs and $N y$ outputs, you can also specify a $N y$-by- $N u$ matrix.

- To generate the impulse response coefficients for negative time values, which is useful for feedback analysis, use a negative integer. If you specify a negative value, the value must be the same across all output channels.

You can also use NK = 'negative' to automatically pick negative lags for all input/ output channels of the model.

- Specify NK $=0$ if the delay is unknown. The true delay is then be indicated by insignificant impulse response values in the beginning of the response.
- Specify NK = 1 to create a system whose leading numerator coefficient is zero.

Positive values of NK greater than 1 are stored in the ioDelay property of sys (sys.ioDelay $=\max (\mathrm{NK}-1,0)$). Negative values are stored in the InputDelay property.

The impulse response (input j to output i) coefficients correspond to the time span NK (i,j)*Ts : Ts : (N(ij)+NK (i,j)-1)*Ts.

Default: zeros $(N y, N u)$

options

Estimation options that specify the following:

- Prefilter order
- Regularization algorithm
- Input and output data offsets

Use impulseestOptions to create the options set.

Output Arguments

sys

Estimated impulse response model.
sys is an idtf model, which encapsulates an FIR model.

Examples

Identify Nonparametric Impulse Response Model from Data

Compute a nonparametric impulse response model using data from a hair dryer. The input is the voltage applied to the heater and the output is the heater temperature. Use the first 500 samples for estimation.

```
load dry2
ze = dry2(1:500);
sys = impulseest(ze);
```

ze is an iddata object that contains time-domain data. sys, the identified nonparametric impulse response model, is an idtf model.

Analyze the impulse response of the identified model from time 0 to 1 . h = impulseplot(sys,1);

Right-click the plot and select Characteristics > Confidence Region to view the statistically zero-response region. Alternatively, you can use the showConfidence command.
showConfidence(h);

Impulse Response

The first significantly nonzero response value occurs at 0.24 seconds, or, the third lag. This implies that the transport delay is 3 samples. To generate a model where the 3 sample delay is imposed, set the transport delay to 3 :
sys = impulseest(ze,[],3)

Specify Order of FIR Model

Estimate an impulse response model with a specific order.
load iddata3 z3

```
sys = impulseest(z3,35);
```


Specify Transport Delay in FIR Model

Estimate an impulse response model with transport delay of 3 samples.
If you know about the presence of delay in the input/output data in advance, use the value as a transport delay for impulse response estimation.

Generate data with 3 sample input to output lag.

```
u = rand(100,1);
sys = idpoly([1 .1 .4],[0 0 0 4 -2],[1 1 .1]);
opt = simOptions('AddNoise',true);
y = sim(sys,u,opt);
data = iddata(y,u,1);
```

Estimate a 20th order model with a 3 sample transport delay.
model $=$ impulseest(data,20,3);

Obtain Regularized Estimate of Impulse Response Model

Obtain regularized estimates of impulse response model using the regularizing kernel estimation option.

Estimate a model using regularization.

```
load iddata3 z3;
sys1 = impulseest(z3);
```

By default, tuned and correlated kernel ('TC') is used for regularization.
Estimate a model with no regularization.

```
opt = impulseestOptions('RegulKernel','none');
sys2 = impulseest(z3,opt);
```

Compare the impulse response of both models.

```
h = impulseplot(sys1,sys2,70);
```

Impulse Response

As the plot shows, using regularization makes the response smoother.
Plot the confidence interval.
showConfidence(h);

Impulse Response

The uncertainty in the computed response is reduced at larger lags for the model using regularization. Regularization decreases variance at the price of some bias. The tuning of the regularization is such that the bias is dominated by the variance error though.

Use Regularized Impulse Response Model to Estimate State-Space Model

Load data.
load regularizationExampleData eData;
Create a transfer function model used for generating the estimation data (true system).
trueSys $=\operatorname{idtf}([0.02008$ 0.04017 0.02008],[1-1.561 0.6414],1);
Obtain regularized impulse response (FIR) model.

```
opt = impulseestOptions('RegulKernel', 'DC');
m0 = impulseest(eData, 70, opt);
```

Convert the model into a transfer function model after reducing the order.
m = balred(idss(m0), 15);
Obtain a state-space model using regularized reduction of ARX model.

```
m1 = ssregest(eData,15);
```

Compare the impulse responses of the true system, regularized and state-space models.
impulse(trueSys, m, m1, 50);

Test Measured Data for Feedback Effects

Use the empirical impulse response of the measured data to verify whether there are feedback effects. Significant amplitude of the impulse response for negative time values indicates feedback effects in data.

Compute the noncausal impulse response using a fourth-order prewhitening filter, automatically chosen order and negative lag using nonregularized estimation.

```
load iddata3 z3;
opt = impulseestOptions('pw',4,'RegulKernel','none');
sys = impulseest(z3,[],'negative',opt);
```

sys is a noncausal model containing response values for negative time.
Analyze the impulse response of the identified model.

```
h = impulseplot(sys);
```


View the statistically zero-response region by right-clicking on the plot and selecting Characteristics > Confidence Region. Alternatively, you can use the showConfidence command.
showConfidence(h);

The large response value at $t=0$ (zero lag) suggests that the data comes from a process containing feedthrough. That is, the input affects the output instantaneously. There could also be a direct feedback effect (proportional control without some delay that u(t) is determined partly by $\mathrm{y}(\mathrm{t})$).

Also, the response values are significant for some negative time lags, such as at -7 seconds and -9 seconds. Such significant negative values suggest the possibility of feedback in the data.

Compute Impulse Response on Frequency Response Data

Compute an impulse response model for frequency response data.
load demofr;

```
zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys = impulseest(data);
```


Compare Identified Nonparametric and Parametric Models

Identify parametric and nonparametric models for a data set, and compare their step response.

Identify the impulse response model (nonparametric) and state-space model (parametric), based on a data set.

```
load iddata1 z1;
sys1 = impulseest(z1);
sys2 = ssest(z1,4);
```

sys1 is a discrete-time identified transfer function model. sys2 is a continuous-time identified state-space model.

Compare the step response for sys1 and sys2.

```
step(sys1,'b',sys2,'r');
legend('impulse response model','state-space model');
```


More About

Tips

- To view the impulse or step response of sys, use either impulseplot or stepplot, respectively.
- A significant value of the impulse response of sys for negative time values indicates the presence of feedback in the data.
- To view the region of insignificant impulse response (statistically zero) in a plot, right-click on the plot and select Characteristics > Confidence Region. A patch depicting the zero-response region appears on the plot. The impulse response at
any time value is significant only if it lies outside the zero response region. The level of significance depends on the number of standard deviations specified in ShowConfidence or options in the property editor. A common choice is 3 standard deviations, which gives 99.7% significance.

Algorithms

Correlation analysis refers to methods that estimate the impulse response of a linear model, without specific assumptions about model orders.

The impulse response, g, is the system's output when the input is an impulse signal. The output response to a general input, $u(t)$, is obtained as the convolution with the impulse response. In continuous time:

$$
y(t)=\int_{-\infty}^{t} g(\tau) u(t-\tau) d \tau
$$

In discrete-time:

$$
y(t)=\sum_{k=1}^{\infty} g(k) u(t-k)
$$

The values of $g(k)$ are the discrete time impulse response coefficients.
You can estimate the values from observed input-output data in several different ways. impulseest estimates the first n coefficients using the least-squares method to obtain a finite impulse response (FIR) model of order n.

Several important options are associated with the estimate:

- Prewhitening - The input can be pre-whitened by applying an input-whitening filter of order PW to the data. This minimizes the effect of the neglected tail ($k>n$) of the impulse response.

1 A filter of order PW is applied such that it whitens the input signal u :
$1 / A=A(u) e$, where A is a polynomial and e is white noise.
2 The inputs and outputs are filtered using the filter:

$$
u f=A u, y f=A y
$$

3 The filtered signals uf and yf are used for estimation.
You can specify prewhitening using the PW name-value pair argument of impulseestOptions.

- Regularization - The least-squares estimate can be regularized. This means that a prior estimate of the decay and mutual correlation among $g(k)$ is formed and used to merge with the information about g from the observed data. This gives an estimate with less variance, at the price of some bias. You can choose one of the several kernels to encode the prior estimate.

This option is essential because, often, the model order n can be quite large. In cases where there is no regularization, n can be automatically decreased to secure a reasonable variance.

You can specify the regularizing kernel using the RegulKernel Name-Value pair argument of impulseestOptions.

- Autoregressive Parameters - The basic underlying FIR model can be complemented by NA autoregressive parameters, making it an ARX model.

$$
y(t)=\sum_{k=1}^{n} g(k) u(t-k)-\sum_{k=1}^{N A} a_{k} y(t-k)
$$

This gives both better results for small n and allows unbiased estimates when data are generated in closed loop. impulseest uses NA $=5$ for $\mathrm{t}>0$ and NA $=0$ (no autoregressive component) for $\mathrm{t}<0$.

- Noncausal effects - Response for negative lags. It may happen that the data has been generated partly by output feedback:

$$
u(t)=\sum_{k=0}^{\infty} h(k) y(t-k)+r(t)
$$

where $h(k)$ is the impulse response of the regulator and r is a setpoint or disturbance term. The existence and character of such feedback h can be estimated in the same way as g, simply by trading places between y and u in the estimation call. Using impulseest with an indication of negative delays, $\mathrm{mi}=\operatorname{impulseest}(d a t a, n k, n b), n k<0$, returns a model mi with an impulse response

$$
[h(-n k), h(-n k-1), \ldots, h(0), g(1), g(2), \ldots, g(n b+n k)]
$$

aligned so that it corresponds to lags $[n k, n k+1, . ., 0,1,2, \ldots, n b+n k]$. This is achieved because the input delay (InputDelay) of model mi is nk.

For a multi-input multi-output system, the impulse response $g(k)$ is an $n y$-by-nu matrix, where $n y$ is the number of outputs and $n u$ is the number of inputs. The $i-j$ element of the matrix $g(k)$ describes the behavior of the i th output after an impulse in the j th input.

- "What Is Time-Domain Correlation Analysis?"

```
See Also
cra | impulse | impulseestOptions | spa| step
```


impulseestOptions

Options set for impulseest

Syntax

options = impulseestOptions
options = impulseestOptions(Name, Value)

Description

options = impulseestOptions creates a default options set for impulseest.
options = impulseestOptions(Name, Value) creates an options set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

'RegulKernel'

Regularizing kernel, used for regularized estimates of impulse response for all inputoutput channels. Regularization reduces variance of estimated model coefficients and produces a smoother response by trading variance for bias. For more information, see [1].

Must be one of the following strings:

- 'TC ' - Tuned and correlated kernel
- 'none ' - No regularization is used
- 'CS ' - Cubic spline kernel
- 'SE ' - Squared exponential kernel
- 'SS ' - Stable spline kernel
- 'HF ' - High frequency stable spline kernel
- 'DI ' - Diagonal kernel
- 'DC ' - Diagonal and correlated kernel

Default: 'TC'

'PW'

Order of the input prewhitening filter. Must be one of the following:

- 'auto' - Uses a filter of order 10 when RegulKernel is 'none'; otherwise, 0.
- Nonnegative integer

Use a nonzero value of prewhitening only for unregularized estimation (RegulKernel is 'none').

Default: 'auto'

'InputOffset'

Input signal offset level of time-domain estimation data. Must be one of the following:

- An Nu-element column vector, where Nu is the number of inputs. For multiexperiment data, specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value InputOffset (i, j) is subtracted from the $i^{\text {th }}$ input signal of the $j^{\text {th }}$ experiment.
- [] - No offsets.

Default: []

'OutputOffset'

Output signal offset level of time-domain estimation data. Must be one of the following:

- An Ny-element column vector, where Ny is the number of outputs. For multiexperiment data, specify a Ny -by-Ne matrix, where Ne is the number of experiments. The offset value OputOffset (i, j) is subtracted from the $i^{\text {th }}$ output signal of the $j^{\text {th }}$ experiment.
- [] - No offsets.

Default: []

'Advanced'

Structure, used during regularized estimation, with the following fields:

- MaxSize - Maximum allowable size of Jacobian matrices formed during estimation. Specify a large positive number.

Default: 250e3

- SearchMethod - Search method for estimating regularization parameters. Must be one of the following strings:
- 'fmincon ': Trust-region-reflective constrained minimizer. Requires Optimization Toolbox software. In general, 'fmincon' is better than 'gn' for handling bounds on regularization parameters that are imposed automatically during estimation.
- 'gn': Quasi-Newton line search.

SearchMethod is used only when RegulKernel is not 'none'.
Default: 'fmincon'
If you do not have Optimization Toolbox software, the default is 'gn'.

- AROrder - Order of the AR-part in the model from input to output. Specify as a positive integer.

An order >0 allows more accurate models of the impulse response in case of feedback and non-white output disturbances.

Default: 5

- FeedthroughInSys - Specify whether the impulse response value at zero lag must be attributed to feedthrough in the system (true) or to feedback effects (false).
Applies only when you compute the response values for negative lags.
Default: false

Output Arguments

options

Option set containing the specified options for impulseest.

Examples

Create Default Options Set for Impulse Response Estimation

Create a default options set for impulseest.

```
options = impulseestOptions;
```


Specify Regularizing Kernel and Prewhitening Options for Impulse Response Estimation

Specify 'HF ' regularizing kernel and order of prewhitening filter for impulseest.

```
options = impulseestOptions('RegulKernel','HF','PW',5);
```

Alternatively, use dot notation to specify these options.

```
options = impulseestOptions;
options.RegulKernel = 'HF';
options.PW = 5;
```


More About

Tips

- A linear model cannot describe arbitrary input-output offsets. Therefore, before using the data, you must either detrend it or remove the levels using InputOffset and OutputOffset. You can reintroduce the removed data during simulations by using the InputOffset and OutputOffset simulation options. For more information, see simOptions.
- Estimating the impulse response by specifying either InputOffset, OutputOffset or both is equivalent to detrending the data using getTrend and detrend. For example:

```
opt = impulseestOptions('InputOffest',in_off,'OuputOffset',out_off);
impulseest(data,opt);
```

is the same as:
Tr = getTrend(data),
Tr.InputOffset = in_off
TR.OutputOffset = out_off

```
dataT = detrend(data,Tr)
impulseest(dataT)
```


References

[1] T. Chen, H. Ohlsson, and L. Ljung. "On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited", Automatica, Volume 48, August 2012.

See Also
impulseest

impulseplot

Plot impulse response and return plot handle

Syntax

```
impulseplot(sys)
impulseplot(sys,Tfinal)
impulseplot(sys,t)
impulseplot(sys1,sys2,...,sysN)
impulseplot(sys1,sys2,...,sysN,Tfinal)
impulseplot(sys1,sys2,...,sysN,t)
impulseplot(AX,...)
impulseplot(..., plotoptions)
h = impulseplot(...)
```


Description

impulseplot plots the impulse response of the "dynamic system model" sys. For multiinput models, independent impulse commands are applied to each input channel. The time range and number of points are chosen automatically. For continuous systems with direct feedthrough, the infinite pulse at $\mathrm{t}=0$ is disregarded. impulseplot can also return the plot handle, h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
impulseplot(sys) plots the impulse response of the LTI model without returning the plot handle.
impulseplot(sys,Tfinal) simulates the impulse response from $t=0$ to the final time $t=$ Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time ($\mathrm{Ts}=-1$), impulseplot interprets Tfinal as the number of sampling intervals to simulate.
impulseplot (sys,t) uses the user-supplied time vector t for simulation. Express t in the system time units, specified in the TimeUnit property of sys. For discrete-time
models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuoustime models, t should be of the form Ti:dt:Tf, where $d t$ becomes the sample time of a discrete approximation to the continuous system (see impulse). The impulseplot command always applies the impulse at $\mathrm{t}=0$, regardless of Ti .

To plot the impulse response of multiple LTI models sys1,sys2,... on a single plot, use:

```
impulseplot(sys1,sys2,...,sysN)
impulseplot(sys1,sys2,...,sysN,Tfinal)
impulseplot(sys1,sys2,...,sysN,t)
```

You can also specify a color, line style, and marker for each system, as in
impulseplot(sys1,'r',sys2, 'y--',sys3,'gx')
impulseplot (AX, ..) plots into the axes with handle AX.
impulseplot(..., plotoptions) plots the impulse response with the options specified in plotoptions. Type
help timeoptions
for more detail.
$\mathrm{h}=$ impulseplot (...) plots the impulse response and returns the plot handle h .

Examples

Example 1

Normalize the impulse response of a third-order system.

```
sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');
```


Example 2

Plot the impulse response and the corresponding 1 std "zero interval" of an identified linear system.

```
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));
z = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(z, 'InputName', 'Voltage', 'InputUnit', 'V');
set(z, 'OutputName', {'Angular position', 'Angular velocity'});
set(z, 'OutputUnit', {'rad', 'rad/s'});
set(z, 'Tstart', 0, 'TimeUnit', 's');
model = n4sid(z,4,n4sidOptions('Focus', 'simulation'));
h = impulseplot(model,2);
showConfidence(h);
```


More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
showConfidence | getoptions | impulse | setoptions

init

Set or randomize initial parameter values

Syntax

Description

$m=$ init (m0) randomizes initial parameter estimates for model structures $m 0$ for any linear or nonlinear identified model. It does not support idnlgrey models. m is the same model structure as mO , but with a different nominal parameter vector. This vector is used as the initial estimate by pem.
$m=\operatorname{init}(m 0, R, p a r s, s p)$ randomizes parameters around pars with variances given by the row vector R. Parameter number k is randomized as $\operatorname{pars}(k)+e^{*} \operatorname{sqrt}(R(k))$, where e is a normal random variable with zero mean and a variance of 1 . The default value of R is all ones, and the default value of pars is the nominal parameter vector in mo.

Only models that give stable predictors are accepted. If $s p=$ ' b ', only models that are both stable and have stable predictors are accepted.
$s p=$ ' s ' requires stability only of the model, and $s p=$ ' p ' requires stability only of the predictor. $s p=$ ' p ' is the default.

Sufficiently free parameterizations can be stabilized by direct means without any random search. To just stabilize such an initial model, set $R=0$. With $R>0$, randomization is also done.

For model structures where a random search is necessary to find a stable model/ predictor, a maximum of 100 trials is made by init. It can be difficult to find a stable predictor for high-order systems by trial and error.

See Also
idnlarx | idnlhw | rsample | simsd

interp

Interpolate FRD model

Syntax

```
isys = interp(sys,freqs)
```


Description

isys $=$ interp(sys,freqs) interpolates the frequency response data contained in the FRD model sys at the frequencies freqs. interp, which is an overloaded version of the MATLAB function interp, uses linear interpolation and returns an FRD model isys containing the interpolated data at the new frequencies freqs. If sys is an IDFRD model, the noise spectrum, if non-empty, is also interpolated. The response and noise covariance data, if available, are also interpolated.

You should express the frequency values freqs in the same units as sys.frequency. The frequency values must lie between the smallest and largest frequency points in sys (extrapolation is not supported).

See Also
idfrd | freqresp | frd

iopzmap

Plot pole-zero map for I/O pairs of model

Syntax

```
iopzmap(sys)
iopzmap(sys1,sys2,...)
```


Description

iopzmap (sys) computes and plots the poles and zeros of each input/output pair of the dynamic system model sys. The poles are plotted as x's and the zeros are plotted as o's.
iopzmap (sys1, sys2, ...) shows the poles and zeros of multiple models sys1,sys2,... on a single plot. You can specify distinctive colors for each model, as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the s or z plane.

For model arrays, iopzmap plots the poles and zeros of each model in the array on the same diagram.

Examples

Pole-Zero Map for MIMO System

Create a one-input, two-output dynamic system.
$H=\left[t f\left(-5,\left[\begin{array}{ll}1 & -1\end{array}\right]\right) ; \operatorname{tf}\left(\left[\begin{array}{lll}1 & -5 & 6\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right] ;\right.$
Plot a pole-zero map.
iopzmap(H)

iopzmap generates a separate map for each I/O pair in the system.

Pole-Zero Map of Identified Model

View the poles and zeros of an over-parameterized state-space model estimated from input-output data. (Requires System Identification Toolbox ${ }^{\mathrm{TM}}$).
load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation')); iopzmap(sys)

The plot shows that there are two pole-zero pairs that almost overlap, which hints are their potential redundancy.

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
pzmap | pole | zero | sgrid | zgrid | iopzplot

iopzplot

Plot pole-zero map for I/O pairs and return plot handle

Syntax

```
h = iopzplot(sys)
iopzplot(sys1,sys2,...)
iopzplot(AX,...)
iopzplot(..., plotoptions)
```


Description

h = iopzplot(sys) computes and plots the poles and zeros of each input/output pair of the LTI model SYS. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.
iopzplot (sys1, sys2, ...) shows the poles and zeros of multiple LTI models SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model, as in
iopzplot(sys1,'r',sys2,'y',sys3,'g')
iopzplot (AX, ...) plots into the axes with handle AX.
iopzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
help pzoptions
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzplot plots the poles and zeros of each model in the array on the same diagram.

Examples

Change I/O Grouping on Pole/Zero Map

Create a pole/zero map of a two-input, two-output dynamic system.

```
sys = rss(3,2,2);
```

h = iopzplot(sys);

Pole-Zero Map

By default, the plot displays the poles and zeros of each I/O pair on its own axis. Use the plot handle to view all I/Os on a single axis.

```
setoptions(h,'IOGrouping','all')
```

Pole-Zero Map

Use Pole-Zero Map to Examine Identified Model

View the poles and zeros of a sixth-order state-space model estimated from input-output data. Use the plot handle to display the confidence intervals of the identified model's pole and zero locations.

```
load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'));
```

```
h = iopzplot(sys);
```

showConfidence(h)

Pole-Zero Map

There is at least one pair of complex-conjugate poles whose locations overlap with those of a complex zero, within the 1- σ confidence region. This suggests their redundancy. Hence, a lower (4th) order model might be more robust for the given data.

```
sys2 = ssest(z1,4,ssestOptions('focus','simulation'));
h = iopzplot(sys,sys2);
showConfidence(h)
legend('6th-order','4th-order')
axis([-20, 10 -30 30])
```


The fourth-order model sys2 shows less variability in the pole-zero locations.

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
showConfidence | getoptions | iopzmap | setoptions

isct

Determine if dynamic system model is in continuous time

Syntax

bool = isct(sys)

Description

bool = isct(sys) returns a logical value of 1 (true) if the dynamic system model sys is a continuous-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments

sys
"Dynamic system model" or array of such models.

Output Arguments

bool

Logical value indicating whether sys is a continuous-time model.
bool $=1$ (true) if sys is a continuous-time model (sys.Ts = 0). If sys is a discrete-time model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sampling time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are continuous.

See Also
isdt | isstable

isdt

Determine if dynamic system model is in discrete time

Syntax

```
bool = isdt(sys)
```


Description

bool = isdt(sys) returns a logical value of 1 (true) if the dynamic system model sys is a discrete-time model. The function returns a logical value of 0 (false) otherwise.

Input Arguments

sys

"Dynamic system model" or array of such models.

Output Arguments

bool

Logical value indicating whether sys is a discrete-time model.
bool $=1$ (true) if sys is a discrete-time model (sys.Ts \# 0). If sys is a continuous-time model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sampling time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are discrete.

See Also
isct | isstable

isempty

Determine whether dynamic system model is empty

Syntax

```
isempty(sys)
```


Description

isempty (sys) returns TRUE (logical 1) if the dynamic system model sys has no input or no output, and FALSE (logical 0) otherwise. Where sys is a FRD model, isempty (sys) returns TRUE when the frequency vector is empty. Where sys is a model array, isempty (sys) returns TRUE when the array has empty dimensions or when the LTI models in the array are empty.

Examples

Both commands

```
isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[],[]))
```

return TRUE (logical 1) while
isempty(ss(1,2,3,4))
returns FALSE (logical 0).

See Also

issiso | size

isproper

Determine if dynamic system model is proper

Syntax

B = isproper(sys)
B = isproper(sys,'elem')
[B, sysr] = isproper(sys)

Description

B = isproper(sys) returns TRUE (logical 1) if the dynamic system model sys is proper and FALSE (logical 0) otherwise.

A proper model has relative degree ≤ 0 and is causal. SISO transfer functions and zero-pole-gain models are proper if the degree of their numerator is less than or equal to the degree of their denominator (in other words, if they have at least as many poles as zeroes). MIMO transfer functions are proper if all their SISO entries are proper. Regular state-space models (state-space models having no E matrix) are always proper. A descriptor state-space model that has an invertible E matrix is always proper. A descriptor state-space model having a singular (non-invertible) E matrix is proper if the model has at least as many poles as zeroes.

If sys is a model array, then B is TRUE if all models in the array are proper.
B = isproper(sys,'elem') checks each model in a model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys are proper.

If sys is a proper descriptor state-space model with a non-invertible E matrix, [B, sysr] = isproper(sys) also returns an equivalent model sysr with fewer states (reduced order) and a non-singular E matrix. If sys is not proper, sysr = sys.

Examples

Examine Whether Models are Proper

The following commands

```
B1 = isproper(tf([1 0],1)) % transfer function s
B2 = isproper(tf([1 0],[1 1])) % transfer function s/(s+1)
```

return FALSE (logical 0) and TRUE (logical 1), respectively.

Compute Equivalent Lower-Order Model

Combining state-space models sometimes yields results that include more states than necessary. Use isproper to compute an equivalent lower-order model.

```
H1 = ss(tf([1 1],[1 2 5]));
H2 = ss(tf([1 7],[1]));
H = H1*H2;
size(H)
```

State-space model with 1 outputs, 1 inputs, and 4 states.
H is proper and reducible. isproper returns the reduced model.

```
[isprop,Hr] = isproper(H);
size(Hr)
```

State-space model with 1 outputs, 1 inputs, and 2 states.

H and Hr are equivalent, as a Bode plot demonstrates.

```
bodeplot(H,Hr,'r--')
legend('original','reduced')
```


See Also
ss | dss

isreal

Determine whether model parameters or data values are real

Syntax

isreal(Data)
isreal(Model)

Description

isreal(Data) returns 1 if all signals of the data set are real. Data is an iddata object.
isreal (Model) returns 1 if all parameters of the model are real. Model is any linear identified model.

See Also
realdata

issiso

Determine if dynamic system model is single-input/single-output (SISO)

Syntax

```
issiso(sys)
```


Description

issiso(sys) returns 1 (true) if the dynamic system model sys is SISO and 0 (false) otherwise.

See Also
isempty | size

isstable

Determine whether system is stable

Syntax

```
B = isstable(sys)
B = isstable(sys,'elem')
```


Description

$B=$ isstable(sys) returns 1 (true) if the dynamic system model sys has stable dynamics, and 0 (false) otherwise. If sys is a model array, then B is true only if all models in sys are stable.
$B=$ isstable(sys, 'elem') returns a logical array of the same dimensions as the model array sys. The logical array indicates which models in sys are stable.
isstable is only supported for analytical models with a finite number of poles.

Examples

Determine Stability of Models in Model Array

Create an array of SISO transfer function models with poles varying from 2 to -2.

```
a = [-2:2];
sys = tf(zeros(1,1,1,length(a)));
for j = 1:length(a)
    sys(1,1,1,j) = tf(1,[1 a(j)]);
end
```

Examine the stability of the model array.
B_all = isstable(sys)

By default, isstable returns a single Boolean value that is 1 (true) only if all models in the array are stable. sys contains some models with nonpositive poles, which are not stable. Therefore, isstable returns 0 (false).

Examine stability of each model in the array, element by element.
B_elem = isstable(sys,'elem')

```
B_elem =
    0
```

The 'elem' flag causes isstable to return an array of Boolean values, which indicate the stability of the corresponding entry in the model array. For example, B_elem (4) = 1, which indicates that $\operatorname{sys}(1,1,1,4)$ is stable.

See Also

pole

ivar

AR model estimation using instrumental variable method

Syntax

```
sys = ivar(data,na)
sys = ivar(data,na,nc)
sys = ivar(data,na,nc,max_size)
```


Description

sys = ivar(data, na) estimates an AR polynomial model, sys, using the instrumental variable method and the time series data data. na specifies the order of the A polynomial.

An AR model is represented by the equation:

$$
A(q) y(t)=e(t)
$$

In the above model, $e(t)$ is an arbitrary process, assumed to be a moving average process of order nc, possibly time varying. nc is assumed to be equal to na. Instruments are chosen as appropriately filtered outputs, delayed nc steps.
sys = ivar(data, na, nc) specifies the value of the moving average process order, nc, separately.
sys = ivar(data, na, nc,max_size) specifies the maximum size of matrices formed during estimation.

Input Arguments

data
Estimation time series data.
data must be an iddata object with scalar output data only.

na

Order of the A polynomial

nc

Order of the moving average process representing $e(t)$.

```
max_size
```

Maximum matrix size.
max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.
Default: 250000

Output Arguments

sys

Identified polynomial model.
sys is an AR idpoly model which encapsulates the identified polynomial model.

Examples

Compare spectra for sinusoids in noise, estimated by the IV method and by the forwardbackward least squares method.

```
y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
    0.2*randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
spectrum(miv,mls)
```


References

[1] Stoica, P., et al. Optimal Instrumental Variable Estimates of the AR-parameters of an ARMA Process, IEEE Trans. Autom. Control, Volume AC-30, 1985, pp. 10661074.

See Also

ar | arx | etfe | idpoly | polyest | spa | spectrum | step

ivstruc

Loss functions for sets of ARX model structures

Syntax

```
v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)
```


Description

$\mathrm{v}=\mathrm{ivstruc}(\mathrm{ze}, \mathrm{zv}, \mathrm{NN})$ computes the loss functions for sets of ARX model structures. NN is a matrix that defines a number of different structures of the ARX type. Each row of NN is of the form

```
nn = [na nb nk]
```

with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.
ze and $z v$ are iddata objects containing output-input data. Only time-domain data is supported. Models for each model structure defined in NN are estimated using the instrumental variable (IV) method on data set ze. The estimated models are simulated using the inputs from data set $\mathbf{z v}$. The normalized quadratic fit between the simulated output and the measured output in ZV is formed and returned in v . The rows below the first row in v are the transpose of NN, and the last row contains the logarithms of the condition numbers of the IV matrix

$$
\sum \varsigma(t) \varphi^{T}(t)
$$

A large condition number indicates that the structure is of unnecessarily high order (see Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, PrenticeHal PTR, 1999, p. 498).

The information in v is best analyzed using selstruc.
The routine is for single-output systems only.
$v=i v s t r u c(z e, z v, N N, p, m a x s i z e)$ specifies the computation of condition numbers and the size of largest matrix formed during computations. If p is equal to zero, the computation of condition numbers is suppressed. maxsize affects the speed/memory trade-off.

Note The IV method used does not guarantee that the models obtained are stable. The output-error fit calculated in V can then be misleading.

Examples

Compare the effect of different orders and delays, using the same data set for both the estimation and validation.

```
load iddata1 z1;
v = ivstruc(z1,z1,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z1,nn);
```


More About

Algorithms

A maximum-order ARX model is computed using the least squares method. Instruments are generated by filtering the input(s) through this model. The models are subsequently obtained by operating on submatrices in the corresponding large IV matrix.

References

Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, PrenticeHal PTR, 1999.

See Also
arxstruc | struc | iv4 | selstruc

ivx

ARX model estimation using instrumental variable method with arbitrary instruments

Syntax

```
sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x,max_size)
```


Description

sys = ivx(data,[na nb nk],x) estimates an ARX polynomial model, sys, using the instrumental variable method with arbitrary instruments. The model is estimated for the time series data data. [na nb nk] specifies the ARX structure orders of the A and B polynomials and the input to output delay, expressed in the number of samples.

An ARX model is represented as:

$$
A(q) y(t)=B(q) u(t-n k)+v(t)
$$

sys = ivx(data,[na nb nk],x,max_size) specifies the maximum size of matrices formed during estimation.

Input Arguments

data
Estimation time series data.
data must be an iddata object and can represent either time- or frequency-domain data. If using frequency domain data, the number of outputs must be 1 .

[na nb nk]

ARX model orders.
For more details on the ARX model structure, see arx.

x

Instrument variable matrix.
x is a matrix containing the arbitrary instruments for use in the instrumental variable method.
x must be of the same size as the output data, data.y. For multi-experiment data, specify x as a cell array with one entry for each experiment.

The instruments used are analogous to the regression vector, with y replaced by x .

```
max_size
```

Maximum matrix size.
max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.
Default: 250000

Output Arguments

sys

Identified polynomial model.
sys is an ARX idpoly model which encapsulates the identified polynomial model.
ivx does not return any estimated covariance information for sys.

More About

Tips

- Use iv4 first for IV estimation to identify ARX polynomial models where the instruments x are chosen automatically. Use ivx for nonstandard situations. For example, when there is feedback present in the data, or, when other instruments need
to be tried. You can also use iv to automatically generate instruments from certain custom defined filters.

References

[1] Ljung, L. System Identification: Theory for the User, page 222, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

See Also

arx | arxstruc | idpoly | iv4 | ivar | polyest

iv4

ARX model estimation using four-stage instrumental variable method.

Syntax

```
sys = iv4(data,[na nb nk])
sys = iv4(data,'na',na,'nb',nb,'nk',nk)
sys = iv4(
```

\qquad

``` , Name, Value)
sys = iv4(
```

\qquad

``` , opt)
```


Description

sys = iv4(data, [na nb nk]) estimates an ARX polynomial model, sys, using the four-stage instrumental variable method, for the data object data. [na nb nk] specifies the ARX structure orders of the A and B polynomials and the input to output delay. The estimation algorithm is insensitive to the color of the noise term.
sys is an ARX model:

$$
A(q) y(t)=B(q) u(t-n k)+v(t)
$$

Alternatively, you can also use the following syntax:
sys = iv4(data, 'na',na,'nb',nb,'nk',nk)
sys = iv4(\qquad , Name, Value) estimates an ARX polynomial with additional options specified by one or more Name,Value pair arguments.
sys = iv4(\qquad , opt) uses the option set, opt, to configure the estimation behavior.

Input Arguments

data

Estimation time series data.
data must be an iddata object.

[na nb nk]

ARX polynomial orders.
For multi-output model, [na nb nk] contains one row for every output. In particular, specify na as an $N y$-by- $N y$ matrix, where each entry is the polynomial order relating the corresponding output pair. Here, $N y$ is the number of outputs. Specify nb and nk as $N y$ -by- $N u$ matrices, where $N u$ is the number of inputs. For more details on the ARX model structure, see arx.

opt

Estimation options.
opt is an options set that configures the estimation options. These options include:

- estimation focus
- handling of initial conditions
- handling of data offsets

Use iv40ptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

'InputDelay'

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

'ioDelay'

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array. Each entry of this array is a numerical value that represents the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

'IntegrateNoise'

Specify integrators in the noise channels.
Adding an integrator creates an ARIX model represented by:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{1}{1-q^{-1}} e(t)
$$

where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
IntegrateNoise is a logical vector of length Ny , where Ny is the number of outputs.
Default: false (Ny, 1), where Ny is the number of outputs

Output Arguments

sys

Identified polynomial model of ARX structure.
sys is an idpoly model which encapsulates the identified polynomial model.

Examples

Estimate a two-input, one-output system with different delays on the inputs u_{1} and u_{2}.

```
z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);
```


More About

Algorithms

Estimation is performed in 4 stages. The first stage uses the arx function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled as a high-order AR model. At the fourth stage, the inputoutput data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage.

For the multiple-output case, optimal instruments are obtained only if the noise sources at the different outputs have the same color. The estimates obtained with the routine are reasonably accurate, however, even in other cases.

References

[1] Ljung, L. System Identification: Theory for the User, equations (15.21) through (15.26), Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

```
See Also
armax | arx | bj | idpoly | iv40ptions | ivx | n4sid | oe | polyest
```


iv4Options

Option set for iv4

Syntax

```
opt = iv4Options
```

opt = iv4Options(Name, Value)

Description

opt $=$ iv40ptions creates the default options set for iv4.
opt = iv40ptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'InitialCondition'

Specify handling of initial conditions during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial condition is set to zero.
- 'estimate ' - The initial condition is treated as an independent estimation parameter.
- 'backcast ' - The initial condition is estimated using the best least squares fit.
- 'auto ' - The software chooses the initial condition handling method based on the estimation data.

Default: 'auto'

'Focus'

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.

- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'
'EstCovar' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

' Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

' InputOffset ' - Remove offset from time-domain input data during estimation
 [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

'OutputOffset' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'Advanced'

Advanced is a structure with the following fields:

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt (eps)

Output Arguments

opt
Option set containing the specified options for iv4.

Examples

Create Default Options Set for ARX Model Estimation Using 4-Stage Instrument Variable Method opt = iv40ptions;

Specify Options for ARX Model Estimation Using 4-Stage Instrument Variable Method

Create an options set for iv4 using the 'backcast' algorithm to initialize the state. Set Display to 'on'.

```
opt = iv4Options('InitialCondition','backcast','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = iv4Options;
opt.InitialCondition = 'backcast';
opt.Display = 'on';
```


See Also

iv4

linapp

Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input

Syntax

```
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)
```


Description

lm = linapp($\mathrm{nlmodel}, \mathrm{u}$) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input signal u, and estimating a linear model 1 m from u and the simulated output signal. 1 m is an idpoly model.
lm = linapp(nlmodel, umin, umax, nsample) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the input signal as a uniformly distributed white noise from the magnitude range umin and umax and (optionally) the number of samples.

Input Arguments

nlmodel

Name of the idnlarx or idnlhw model object you want to linearize.

u

Input signal as an iddata object or a real matrix.
Dimensions of u must match the number of inputs in nlmodel.

```
[umin,umax]
```

Minimum and maximum input values for generating white-noise input with a magnitude in this rectangular range. The sample length of this signal is nsample. nsample

Optional argument when you specify [umin, umax]. Specifies the length of the white-noise input.

Default: 1024.

More About

- "Linear Approximation of Nonlinear Black-Box Models"

```
See Also
idnlarx| idnlhw | findop(idnlarx) | linearize(idnlarx) | findop(idnlhw)
| linearize(idnlhw)
```


linear

Class representing linear nonlinearity estimator for nonlinear ARX models

Syntax

```
lin=linear
lin=linear('Parameters',Par)
```


Description

linear is an object that stores the linear nonlinearity estimator for estimating nonlinear ARX models.
lin=linear instantiates the linear object.
lin=linear('Parameters', Par) instantiates the linear object and specifies optional values in the Par structure. For more information about this structure, see "linear Properties" on page 1-607.

linear Properties

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:
\% List Parameters values
get(lin)
\% Get value of Parameters property lin.Parameters

Property Name	Description
Parameters	Structure containing the following fields:
	- \quad LinearCoef: $\mathrm{m}-b y-1$ vector L. OutputOffset: Scalar d.

Examples

Estimate a nonlinear ARX model using the linear estimator with custom regressors for the following system:

$$
y(t)=a 1 y(t-1)+a 2 y(t-2)+a 3 u(t-1)+a 4 y(t-1) u(t-2)+a 5|u(t)| u(t-3)+a 6,
$$

where u is the input and y is the output.

```
%Create regressors y(t-1), y(t-2) and u(t-1).
orders = [2 1 1];
% Create an idnlarx model using linear estimator with custom regressors.
model = idnlarx(orders, linear, 'InputName', 'u', 'OutputName', 'y',...
    'CustomRegressors', {'y(t-1)*u(t-2)','abs(u(t))*u(t-3)'})
% Estimate the model parameters a1, a2, ... a6.
EstimatedModel = nlarx(data, model)
```

Note: The nonlinearity in the model is described by custom regressors only.

Tutorials

"How to Estimate Nonlinear ARX Models at the Command Line"

More About

Tips

- linear is a linear (affine) function $y=F(x)$, defined as follows:

$$
F(x)=x L+d
$$

y is scalar, and x is a $1-b y-\mathrm{m}$ vector.

- Use evaluate (lin, x) to compute the value of the function defined by the linear object lin at x .
- When creating a nonlinear ARX model using the constructor (idnlarx) or estimator ($n l a r x$), you can specify a linear nonlinearity estimator using [], instead of entering linear explicitly. For example:

```
m=idnlarx(orders,[]);
```


Algorithms

When the idnlarx property Focus is 'Prediction', linear uses a fast, noniterative initialization and iterative search technique for estimating parameters. In most cases, iterative search requires only a few iterations.

When the idnlarx property Focus='Simulation', linear uses an iterative technique for estimating parameters.

See Also

customreg | nlarx

idnlarx/linearize

Linearize nonlinear ARX model

Syntax

SYS = linearize(NLSYS, UO, XO)

Description

SYS = linearize(NLSYS, UO, XO) linearizes a nonlinear ARX model about the specified operating point UO and XO. The linearization is based on tangent linearization. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 1-415.

Input Arguments

- NLSYS: idnlarx model.
- UO: Matrix containing the constant input values for the model.
- XO: Model state values. The states of a nonlinear ARX model are defined by the timedelayed samples of input and output variables. For more information about the states of nonlinear ARX models, see the getDelayInfo reference page.

Note: To estimate UO and XO from operating point specifications, use the findop(idnlarx) command.

Output Arguments

- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

Examples

Linearize Nonlinear ARX Model at Simulation Snapshot

Linearize a nonlinear ARX model around an operating point corresponding to a simulation snapshot at a specific time.

Load sample data.
load iddata2
Estimate nonlinear ARX model from sample data.

```
nlsys = nlarx(z2,[4 3 10],'tree','custom',...
    {'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',\ldots.
        'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);
```

Plot the response of the model for a step input.
step(nlsys, 20)

Step Response

The step response is a steady-state value of 0.8383 at $\mathrm{T}=20$ seconds.
Compute the operating point corresponding to $\mathrm{T}=20$.
stepinput = iddata([],[zeros(10,1);ones(200,1)],nlsys.Ts);
[x,u] = findop(nlsys,'snapshot',20,stepinput);
Linearize the model about the operating point corresponding to the model snapshot at T $=20$.
sys = linearize(nlsys, $u, x)$;
Validate the linear model.

Apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the linear approximation is accurate, the following should match:

- The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and the perturbation delta_u.
- The sum of the response of the linear model to a perturbation input delta_u and the output equilibrium level.

Generate a 200 -sample perturbation step signal with amplitude 0.1.

```
delta_u = [zeros(10,1); 0.1*ones(190,1)];
```

For a nonlinear system with a steady-state input of 1 and a steady-state output of 0.8383 , compute the steady-state response $y _n l$ to the perturbed input $u _n l$. Use equilibrium state values X computed previously as initial conditions.

```
u_nl = 1 + delta_u;
y_nl = sim(nlsys,u_nl,x);
```

Compute response of linear model to perturbation input and add it to the output equilibrium level.

```
y_lin = 0.8383 + lsim(sys,delta_u);
```

Compare the response of nonlinear and linear models.

```
time = [0:0.1:19.9]';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response','Linear response about op. pt.')
title(['Nonlinear and linear model response for small step input'])
```


More About

Algorithms

The following equations govern the dynamics of an idnlarx model:

$$
\begin{aligned}
& X(t+1)=A X(t)+B \tilde{u}(t) \\
& y(t)=f(X, u)
\end{aligned}
$$

where $X(t)$ is a state vector, $u(t)$ is the input, and $y(t)$ is the output. A and B are constant matrices. $\tilde{u}(t)$ is $[y(t), u(t)]^{T}$.

The output at the operating point is given by
$y^{*}=f\left(X^{*}, u^{*}\right)$
where X^{*} and u^{*} are the state vector and input at the operating point.
The linear approximation of the model response is as follows:

$$
\begin{aligned}
& \Delta X(t+1)=\left(A+B_{1} f_{X}\right) \Delta X(t)+\left(B_{1} f_{u}+B_{2}\right) \Delta u(t) \\
& \Delta y(t)=f_{X} \Delta X(t)+f_{u} \Delta u(t)
\end{aligned}
$$

where

- $\Delta X(t)=X(t)-X^{*}(t)$
- $\Delta u(t)=u(t)-u^{*}(t)$
- $\Delta y(t)=y(t)-y^{*}(t)$
- $B \tilde{U}=\left[B_{1}, B_{2}\right]\left[\begin{array}{l}Y \\ U\end{array}\right]=B_{1} Y+B_{2} U$
-

$f_{X}=\left.\frac{\partial}{\partial X} f(X, U)\right|_{X^{*}, U^{*}}$
-

$$
f_{U}=\left.\frac{\partial}{\partial U} f(X, U)\right|_{X^{*}, U^{*}}
$$

Note: For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

- "Linear Approximation of Nonlinear Black-Box Models"

See Also

findop(idnlarx) | idnlarx | linapp | getDelayInfo

idnlhw/linearize

Linearize Hammerstein-Wiener model

Syntax

SYS = linearize(NLSYS,UO)
SYS = linearize(NLSYS,UO, XO)

Description

SYS = linearize(NLSYS, UO) linearizes a Hammerstein-Wiener model around the equilibrium operating point. When using this syntax, equilibrium state values for the linearization are calculated automatically using UO.

SYS = linearize(NLSYS, UO, XO) linearizes the idnlhw model NLSYS around the operating point specified by the input UO and state values XO. In this usage, XO need not contain equilibrium state values. For more information about the definition of states for idnlhw models, see "idnlhw States" on page 1-448.

The output is a linear model that is the best linear approximation for inputs that vary in a small neighborhood of a constant input $u(t)=U$. The linearization is based on tangent linearization.

Input Arguments

- NLSYS: idnlhw model.
- UO: Matrix containing the constant input values for the model.
- XO: Operating point state values for the model.

Note: To estimate UO and XO from operating point specifications, use the findop(idnlhw) command.

Output Arguments

- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

Examples

More About

Algorithms

The idnlhw model structure represents a nonlinear system using a linear system connected in series with one or two static nonlinear systems. For example, you can use a static nonlinearity to simulate saturation or dead-zone behavior. The following figure shows the nonlinear system as a linear system that is modified by static input and output nonlinearities, where function \boldsymbol{f} represents the input nonlinearity, \boldsymbol{g} represents the output nonlinearity, and $[A, B, C, D]$ represents a state-space parameterization of the linear model.

The following equations govern the dynamics of an idnlhw model:
$v(t)=f(u(t))$
$X(t+1)=A X(t)+B v(t)$
$w(t)=C X(t)+D v(t)$
$y(t)=g(w(t))$
where

- u is the input signal
- $\quad v$ and w are intermediate signals (outputs of the input nonlinearity and linear model respectively)
- y is the model output

The linear approximation of the Hammerstein-Wiener model around an operating point (X^{*}, u^{*}) is as follows:

$$
\begin{aligned}
& \Delta X(t+1)=A \Delta X(t)+B f_{u} \Delta u(t) \\
& \Delta y(t) \approx g_{w} C \Delta X(t)+g_{w} D f_{u} \Delta u(t)
\end{aligned}
$$

where

- $\Delta X(t)=X(t)-X^{*}(t)$
- $\Delta u(t)=u(t)-u^{*}(t)$
- $\Delta y(t)=y(t)-y^{*}(t)$
-

$f_{u}=\left.\frac{\partial}{\partial u} f(u)\right|_{u=u^{*}}$
-

$$
g_{w}=\left.\frac{\partial}{\partial w} g(w)\right|_{w=w^{*}}
$$

where y^{*} is the output of the model corresponding to input u^{*} and state vector $X^{*}, v^{*}=$ $f\left(u^{*}\right)$, and w^{*} is the response of the linear model for input v^{*} and state X^{*}.

Note: For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

- "Linear Approximation of Nonlinear Black-Box Models"

See Also

findop(idnlhw) | idnlhw | linapp

Isim

Simulate time response of dynamic system to arbitrary inputs

Syntax

```
lsim
lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')
lsim(sys)
```


Description

lsim simulates the (time) response of continuous or discrete linear systems to arbitrary inputs. When invoked without left-hand arguments, lsim plots the response on the screen.
lsim(sys, u,t) produces a plot of the time response of the "dynamic system model" sys to the input time history t, u. The vector t specifies the time samples for the simulation (in system time units, specified in the TimeUnit property of sys), and consists of regularly spaced time samples.
t = 0:dt:Tfinal
The matrix u must have as many rows as time samples (length(t)) and as many columns as system inputs. Each row $u(i,:)$ specifies the input value(s) at the time sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete time, u must be sampled at the same rate as the system (t is then redundant and can be omitted or set to the empty matrix). In continuous time, the time sampling $d t=t(2)-t(1)$ is used to discretize the continuous model. If dt is too large (undersampling), lsim issues a warning suggesting that you use a more appropriate sample time, but will use the specified sample time. See "Algorithms" on page 1-623 for a discussion of sample times.
$\operatorname{lsim}(s y s, u, t, x 0)$ further specifies an initial condition $x 0$ for the system states. This syntax applies only to state-space models.
lsim(sys, $u, t, x 0, ' z o h ')$ or $\operatorname{lsim}(s y s, u, t, x 0, ' f o h ')$ explicitly specifies how the input values should be interpolated between samples (zero-order hold or linear interpolation). By default, lsim selects the interpolation method automatically based on the smoothness of the signal U .

Finally,

```
lsim(sys1,sys2,...,sysN,u,t)
```

simulates the responses of several LTI models to the same input history t, u and plots these responses on a single figure. As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,
lsim(sys1,'y:',sys2,'g--', u,t,x0)
The multisystem behavior is similar to that of bode or step.
When invoked with left-hand arguments,

```
[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state
```

return the output response y, the time vector t used for simulation, and the state trajectories x (for state-space models only). No plot is drawn on the screen. The matrix y has as many rows as time samples (length(t$)$) and as many columns as system outputs. The same holds for x with "outputs" replaced by states.
lsim(sys) opens the Linear Simulation Tool GUI. For more information about working with this GUI, see "Working with the Linear Simulation Tool".

Examples

Simulate Response to Square Wave

Simulate and plot the response of the following system to a square wave with period of four seconds:

$$
H(s)=\left[\begin{array}{c}
\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
\frac{s-1}{s^{2}+s+5}
\end{array}\right]
$$

Create the transfer function, and generate the square wave with gensig. Sample every 0.1 second during 10 seconds.

```
H = [tf([2 5 1],[1 2 3]);tf([1 -1],[1 1 5])];
[u,t] = gensig('square',4,10,0.1);
```

Then simulate with lsim.

```
lsim(H,u,t)
```

Linear Simulation Results

The plot displays both the applied signal and the response.

Simulate Response of Identified Model

Simulate the response of an identified linear model using the same input signal as the one used for estimation and the initial states returned by the estimation command.

```
load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');
[sys,x0] = n4sid(z,4);
[y,t,x] = lsim(sys, z.InputData, [], x0);
```

Compare the simulated response y to measured response z.OutputData.

```
plot(t,z.OutputData,'k',t,y,'r')
```

legend('Measured','Simulated')

More About

Algorithms

Discrete-time systems are simulated with ltitr (state space) or filter (transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh'or 'foh' method ('foh' is used for smooth input signals and 'zoh' for discontinuous signals such as pulses or square waves). The sampling period is set to the spacing $d t$ between the user-supplied time samples t .

The choice of sampling period can drastically affect simulation results. To illustrate why, consider the second-order model

$$
H(s)=\frac{\omega^{2}}{s^{2}+2 s+\omega^{2}}, \quad \omega=62.83
$$

To simulate its response to a square wave with period 1 second, you can proceed as follows:

```
w2 = 62.83^2;
h = tf(w2,[1 2 w2]);
t = 0:0.1:5; % vector of time samples
u = (rem(t,1) >= 0.5); % square wave values
lsim(h,u,t)
```

lsim evaluates the specified sample time, and issues a warning:

```
Warning: Input signal is undersampled. Sample every 0.016 sec or
```

faster.

To improve on this response, discretize $H(s)$ using the recommended sampling period:

```
dt = 0.016;
ts = 0:dt:5;
us = (rem(ts,1) >= 0.5);
hd = c2d(h,dt);
lsim(hd,us,ts)
```


This response exhibits strong oscillatory behavior that is hidden in the undersampled version.

```
See Also
gensig | impulse | initial| step | sim | lsiminfo | ltiview
```


Isiminfo

Compute linear response characteristics

Syntax

S = lsiminfo(y,t,yfinal)
S = lsiminfo(y,t)
S = lsiminfo(...,'SettlingTimeThreshold',ST)

Description

$\mathrm{S}=$ lsiminfo($\mathrm{y}, \mathrm{t}, \mathrm{yf} \mathrm{inal})$ takes the response data (t, y) and a steady-state value yfinal and returns a structure S containing the following performance indicators:

- SettlingTime - Settling time
- Min - Minimum value of Y
- MinTime - Time at which the min value is reached
- Max - Maximum value of Y
- MaxTime - Time at which the max value is reached

For SISO responses, t and y are vectors with the same length NS. For responses with NY outputs, you can specify y as an NS-by-NY array and yfinal as a NY-by-1 array. lsiminfo then returns an NY-by-1 structure array S of performance metrics for each output channel.
$\mathrm{S}=1 \operatorname{siminfo}(\mathrm{y}, \mathrm{t})$ uses the last sample value of y as steady-state value yf inal. $\mathrm{s}=$ lsiminfo(y) assumes $t=1: N S$.

S = lsiminfo(..., 'SettlingTimeThreshold', ST) lets you specify the threshold ST used in the settling time calculation. The response has settled when the error $\mid \mathrm{y}(\mathrm{t})$ - yfinal| becomes smaller than a fraction ST of its peak value. The default value is ST=0. 02 (2\%).

Examples

Create a fourth order transfer function and ascertain the response characteristics.

```
sys = tf([1 -1],[1 2 3 4]);
[y,t] = impulse(sys);
s = lsiminfo(y,t,0) % final value is 0
s =
    SettlingTime: 22.8626
        Min: -0.4270
        MinTime: 2.0309
            Max: 0.2845
        MaxTime: 4.0619
```


See Also

```
lsim | impulse | initial | stepinfo
```


Isimplot

Simulate response of dynamic system to arbitrary inputs and return plot handle

Syntax

```
h = lsimplot(sys)
lsimplot(sys1,sys2,...)
lsimplot(sys,u,t)
lsimplot(sys,u,t,x0)
lsimplot(sys1,sys2,...,u,t,x0)
lsimplot(AX,...)
lsimplot(..., plotoptions)
lsimplot(sys,u,t,x0,'zoh')
lsimplot(sys,u,t,x0,'foh')
```


Description

h = lsimplot(sys) opens the Linear Simulation Tool for the "dynamic system model" sys, which enables interactive specification of driving input(s), the time vector, and initial state. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
lsimplot(sys1, sys2, . .) opens the Linear Simulation Tool for multiple models sys1,sys2,.... Driving inputs are common to all specified systems but initial conditions can be specified separately for each.
lsimplot (sys, u, t) plots the time response of the model sys to the input signal described by u and t. The time vector t consists of regularly spaced time samples (in system time units, specified in the TimeUnit property of sys). For MIMO systems, u is a matrix with as many columns as inputs and whose ith row specifies the input value at time $t(i)$. For SISO systems u can be specified either as a row or column vector. For example,

```
t = 0:0.01:5;
u = sin(t);
lsimplot(sys,u,t)
```

simulates the response of a single-input model sys to the input $u(t)=\sin (t)$ during 5 seconds.

For discrete-time models, u should be sampled at the same rate as sys (t is then redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period $t(2)-t(1)$ small enough to accurately describe the input u. lsim issues a warning when u is undersampled, and hidden oscillations can occur.
lsimplot (sys, $u, t, x 0$) specifies the initial state vector $x 0$ at time $t(1)$ (for statespace models only). $x 0$ is set to zero when omitted.
lsimplot (sys1, sys2, ..., u,t,x0) simulates the responses of multiple LTI models sys1,sys2,... on a single plot. The initial condition $\times 0$ is optional. You can also specify a color, line style, and marker for each system, as in

```
lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)
```

lsimplot (AX, ...) plots into the axes with handle AX.
lsimplot (..., plotoptions) plots the initial condition response with the options specified in plotoptions. Type
help timeoptions
for more detail.
For continuous-time models, lsimplot(sys,u,t,x0, 'zoh') or lsimplot (sys,u,t,x0,'foh') explicitly specifies how the input values should be interpolated between samples (zero-order hold or linear interpolation). By default, lsimplot selects the interpolation method automatically based on the smoothness of the signal u.

```
See Also
getoptions | lsim | setoptions
```


mag2db

Convert magnitude to decibels (dB)

Syntax

$y d b=m a g 2 d b(y)$

Description

$\mathrm{ydb}=\operatorname{mag} 2 \mathrm{db}(\mathrm{y})$ returns the corresponding decibel (dB) value $y d b$ for a given magnitude y. The relationship between magnitude and decibels is $y d b=20 \log _{10}(y)$.

See Also
db2mag

merge (iddata)

Merge data sets into iddata object

Syntax

```
dat = merge(dat1,dat2,....,datN)
```


Description

dat collects the data sets in dat1, ..., datN into one iddata object, with several experiments. The number of experiments in dat will be the sum of the number of experiments in datk. For the merging to be allowed, a number of conditions must be satisfied:

- All of datk must have the same number of input channels, and the InputNames must be the same.
- All of datk must have the same number of output channels, and the OutputNames must be the same. If some input or output channel is lacking in one experiment, it can be replaced by a vector of NaNs to conform with these rules.
- If the ExperimentNames of datk have been specified as something other than the default 'Exp1', 'Exp2', etc., they must all be unique. If default names overlap, they are modified so that dat will have a list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input properties (Period, InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp. You can also retrieve them by subreferencing with a fourth index.

```
dat1 = dat(:,:,:,ExperimentNumber)
or
dat1 = dat(:,:,:,ExperimentName)
```

Storing multiple experiments as one iddata object can be very useful for handling experimental data that has been collected on different occasions, or when a data set
has been split up to remove "bad" portions of the data. All the toolbox routines accept multiple-experiment data.

Examples

Bad portions of data have been detected around sample 500 and between samples 720 to 730. Cut out these bad portions and form a multiple-experiment data set that can be used to estimate models without the bad data destroying the estimate.

```
dat = merge(dat(1:498),dat(502:719),dat(731:1000))
m = pem(dat)
```

Use the first two parts to estimate the model and the third one for validation.

```
m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)
```


See Also

getexp | iddata | merge

Related Examples

- "Dealing with Multi-Experiment Data and Merging Models"
- "Create Multiexperiment Data at the Command Line"

merge

Merge estimated models

Syntax

```
m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)
```


Description

$\mathrm{m}=\mathrm{merge}(\mathrm{m} 1, \mathrm{~m} 2, \ldots ., \mathrm{mN})$ merges estimated models. The models $\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{mN}$ must all be of the same structure, just differing in parameter values and covariance matrices. Then m is the merged model, where the parameter vector is a statistically weighted mean (using the covariance matrices to determine the weights) of the parameters of mk.
[m, tv] = merge $(\mathrm{m} 1, \mathrm{~m} 2)$ returns a test variable tv. When two models are merged,
[m, tv] = merge(m1,m2)
tv is x^{2} distributed with n degrees of freedom, if the parameters of $m 1$ and $m 2$ have the same means. Here n is the length of the parameter vector. A large value of tv thus indicates that it might be questionable to merge the models.

For idfrd models, merge is a statistical average of two responses in the individual models, weighted using inverse variances. You can only merge two idfrd models with responses at the same frequencies and nonzero covariances.

Merging models is an alternative to merging data sets and estimating a model for the merged data.

```
load iddata1 z1;
load iddata2 z2;
m1 = arx(z1,[[2 3 4]);
m2 = arx(z2,[[2 3 4]);
ma = merge(m1,m2);
and
```

```
mb = arx(merge(z1,z2),[2 3 4]);
```

result in models ma and mb that are related and should be close. The difference is that merging the data sets assumes that the signal-to-noise ratios are about the same in the two experiments. Merging the models allows one model to be much more uncertain, for example, due to more disturbances in that experiment. If the conditions are about the same, we recommend that you merge data rather than models, since this is more efficient and typically involves better conditioned calculations.

midprefs

Set folder for storing idprefs.mat containing System Identification app startup information

Syntax

```
midprefs
midprefs(path)
```


Description

The System Identification app systemIdentification allows a large number of variables for customized choices. These include the window layout, the default choices of plot options, and names and directories of the four most recent sessions with the System Identification app. This information is stored in the file idprefs.mat, which should be placed on the user's MATLABPATH. The default, automatic location for this file is in the same folder as the user's startup.m file.
midprefs is used to select or change the folder where you store idprefs.mat. Either type midprefs and follow the instructions, or give the folder name as the argument. Include all folder delimiters, as in the PC case

```
midprefs('c:\matlab\toolbox\local\')
or in the UNIX }\mp@subsup{}{}{\circledR}\mathrm{ case
midprefs('/home/ljung/matlab/')
```


See Also

```
systemIdentification
```


misdata

Reconstruct missing input and output data

Syntax

```
Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)
```


Description

Datae $=$ misdata (Data) reconstructs missing input and output data. Data is timedomain input-output data in the iddata object format. Missing data samples (both in inputs and in outputs) are entered as NaNs. Datae is an iddata object where the missing data has been replaced by reasonable estimates.

Datae $=$ misdata(Data, Model) specifies a model used for the reconstruction of missing data. Model is any linear identified model (idtf, idproc, idgrey, idpoly, idss). If no suitable model is known, it is estimated in an iterative fashion using default order state-space models.

Datae = misdata(Data, Maxiter, Tol) specifies maximum number of iterations and tolerance. Maxiter is the maximum number of iterations carried out (the default is 10). The iterations are terminated when the difference between two consecutive data estimates differs by less than Tol\%. The default value of Tol is 1 .

More About

Algorithms

For a given model, the missing data is estimated as parameters so as to minimize the output prediction errors obtained from the reconstructed data. See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is not the best approach from a statistical point of view, but is a good approximation in many cases.

When no model is given, the algorithm alternates between estimating missing data and estimating models, based on the current reconstruction.

See Also
advice | arx | pexcit | tfest

n4sid

Estimate state-space model using a subspace method.

Syntax

```
sys = n4sid(data,nx)
sys = n4sid(data,nx,Name,Value)
sys = n4sid(
```

\qquad

``` ,opt)
[sys,x0] = n4sid(___)
```


Description

sys $=\mathrm{n} 4$ sid(data, nx) estimates an $n x$ order state-space model, sys, using measured input-output data, data.
sys is an idss model representing the system:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

A, B, C, and D are state-space matrices. K is the disturbance matrix. $u(t)$ is the input, $y(t)$ is the output, $x(t)$ is the vector of nx states and $e(t)$ is the disturbance.

All the entries of the A, B, C and K matrices are free estimation parameters by default. D is fixed to zero by default, meaning that there is no feedthrough, except for static systems ($n x=0$).
sys $=n 4$ sid(data, $n x$, Name, Value) specifies additional attributes of the state-space structure using one or more Name,Value pair arguments. Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.
sys = n4sid(__ , opt) specifies estimation options, opt, that configure the initial states, estimation objective, and subspace algorithm related choices to be used for estimation.
[sys,x0] = n4sid(__) also returns the estimated initial state.

Input Arguments
 data

Estimation data.
For time domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:

- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

For multiexperiment data, the sample times and intersample behavior of all the experiments must match.

You can only estimate continuous-time models using continuous-time frequency domain data. You can estimate both continuous-time and discrete-time models (of sample time matching that of data) using time-domain data and discrete-time frequency domain data.

nx

Order of estimated model.
Specify $n \mathrm{x}$ as a positive integer. nx may be a scalar or a vector. If nx is a vector, then n4sid creates a plot which you can use to choose a suitable model order. The plot shows the Hankel singular values for models of different orders. States with relatively small Hankel singular values can be safely discarded. A default choice is suggested in the plot.

You can also specify $n x$ as 'best ' , in which case the optimal order is automatically chosen from $n \mathrm{x}=1, \ldots, 10$.
opt
Estimation options.
opt is an options set, created using n4sidOptions, which specifies options including:

- Estimation objective
- Handling of initial conditions
- Subspace algorithm related choices

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'Ts ' - Sample time

sample time of data (data.Ts) (default) | positive scalar | 0
Sample time. For continuous-time models, use Ts = 0. For discrete-time models, specify Ts as a positive scalar whose value is equal to that of the data sampling time.

```
'Form' - Type of canonical form
'free' (default) | 'modal' | 'companion' | 'canonical'
```

Type of canonical form of sys, specified as one of the following strings.

- 'modal' - Obtain sys in modal form.
- 'companion ' - Obtain sys in companion form.
- 'free' - All entries of the A, B and C matrices are estimated.
- 'canonical' - Obtain sys in observability canonical form [1].

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

'Feedthrough ' - Direct feedthrough from input to output

Logical specifying direct feedthrough from input to output.
Feedthrough is a logical vector of length of length $N u$, where $N u$ is the number of inputs.

If Feedthrough is specified as a logical scalar, this value is applied to all the inputs.
Default: false ($1, N u$) ($N u$ is the number of inputs). If the model has no states, then Feedthrough is true (1, Nu).

'DisturbanceModel ' - Specify whether to estimate the K matrix

Specifies if the noise component, the K matrix, is to be estimated.
DisturbanceModel requires one of the following values:

- 'none ' - Noise component is not estimated. The value of the K matrix, is fixed to zero value.
- 'estimate ' - The K matrix is treated as a free parameter.

DisturbanceModel must be ' none ' when using frequency domain data.
Default: 'estimate' (For time domain data)

'InputDelay' - Input delays

0 (default) | scalar | vector
Input delay for each input channel, specified as a numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Output Arguments

sys

Identified state-space model.
sys is an idss model, which encapsulates the identified state-space model.

x0

Initial states computed during the estimator of sys.
If data contains multiple experiments, then $x 0$ is an array with each column corresponding to an experiment.

Examples

Estimate State-Space Model and Specify Estimation Options

Load estimation data.
load iddata2 z2
Specify the estimation options.

```
opt = n4sidOptions('Focus','simulation','Display','on');
```

Estimate the model.

```
nx = 3;
sys = n4sid(z2,nx,opt);
```

sys is a third-order, state-space model.

Estimate State-Space Model from Closed-Loop Data

Estimate a state-space model from closed-loop data using the subspace algorithm SSARX. This algorithm is better at capturing feedback effects than other weighting algorithms.

Generate closed-loop estimation data for a second-order system corrupted by white noise.

```
N = 1000; K = 0.5;
rng('default');
w = randn(N,1);
z = zeros(N,1); u = zeros(N,1); y = u;
e = randn(N,1);
v = filter([1 0.5],[1 1.5 0.7],e);
z(1) = 0; z(2) = 0; u(1) = 0; u(2) = 0; y(1) = 0; y(2) = 0;
for k = 3:N
    u(k-1) = -K*y(k-2)+w(k);
    u(k-1) = -K*y(k-1)+w(k);
    z(k) = 1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2);
    y(k) = z(k) + .8*v(k);
end
dat = iddata(y, u, 1);
```

Specify the weighting scheme used by the N4SID algorithm. In one options set, specify the algorithm as CVA and in the other, specify as SSARX.

```
optCVA = n4sidOptions('N4weight','CVA');
optSSARX = n4sidOptions('N4weight','SSARX');
```

Estimate state-space models using the options sets.
sysCVA = n4sid(dat, 2, optCVA);
sysSSARX = n4sid(dat, 2, optSSARX);
Compare the fit of the two models with the estimation data.
compare(dat, sysCVA, sysSSARX);

From the plot, you see that the model estimated using the SSARX algorithm produces a better fit than the CVA algorithm.

Estimate a Canonical-Form, Continuous-Time Model

Estimate a continuous-time, canonical-form model.

Load estimation data.

```
load iddata1 z1
```

Specify the estimation options.

```
opt = n4sidOptions('Focus','simulation','Display','on');
```

Estimate the model.

```
nx = 2;
sys = n4sid(z1,nx,'Ts',0,'Form','canonical',opt);
```

sys is a second-order, continuous-time, state-space model in the canonical form.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by- 1 for real eigenvalues and 2 -by- 2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues ($\lambda_{1}, \sigma \pm j \omega, \lambda_{2}$), the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the right-most column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . . & 0 & 1 & -\alpha_{1}
\end{array}\right]
$$

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

References

[1] Ljung, L. System Identification: Theory for the User, Appendix 4A, Second Edition, pp. 132-134. Upper Saddle River, NJ: Prentice Hall PTR, 1999.
[2] van Overschee, P., and B. De Moor. Subspace Identification of Linear Systems: Theory, Implementation, Applications. Springer Publishing: 1996.
[3] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica, 1994, Vol. 30, pp. 61-74.
[4] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control." Proceedings of the 29th IEEE Conference on Decision and Control, 1990, pp. 596-604.

See Also

canon | iddata | idfrd | idgrey | idss | n4sidOptions | pem | polyest | procest | ssest | tfest

n4sidOptions

Option set for n4sid

Syntax

```
opt = n4sidOptions
```

opt = n4sidOptions(Name, Value)

Description

opt $=n 4$ sidOptions creates the default options set for n4sid.
opt $=$ n4sidOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'InitialState' - Specify handling of initial states during estimation 'estimate' (default) | 'zero'

Specify handling of initial states during estimation, specified as one of the following strings:

- 'zero' - The initial state is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.

'N4Weight'

Weighting scheme used for singular-value decomposition by the N4SID algorithm.
'N4Weight ' requires one of the following values:

- 'MOESP ' - Uses the MOESP algorithm by Verhaegen [2].
- 'CVA' - Uses the Canonical Variable Algorithm by Larimore [1].

Estimation using frequency-domain data always uses 'CVA'.

- 'SSARX ' - A subspace identification method that uses an ARX estimation based algorithm to compute the weighting.

Specifying this option allows unbiased estimates when using data that is collected in closed-loop operation. For more information about the algorithm, see [4].

- 'auto ' - The estimating function chooses between the MOESP, CVA and SSARX algorithms.

Default: 'auto'
'N4Horizon'
Forward- and backward-prediction horizons used by the N4SID algorithm.
'N4Horizon ' requires one of the following values:

- A row vector with three elements - [r sy su], where r is the maximum forward prediction horizon, using up to r step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [3] for more information. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. k is the number of guesses of [r sy su] combinations. If you specify N4Horizon as a single column, $r=s y=s u$ is used.
- 'auto ' - The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: auto

'Focus'

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.

- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Thus, the method may not result in a stable model. Specify Focus as 'stability' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[$w l$, wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This format calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector
of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

```
Default: 'prediction'
```


'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

'Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

' InputOffset ' - Remove offset from time-domain input data during estimation [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' OutputOffset ' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'OutputWeight' - Criterion used during minimization

[] (default) | 'noise' | positive semidefinite symmetric matrix
Specifies criterion used during minimization, specified as one of the following:

- 'noise ' - Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates in case no data is available about the variance of the noise. This option uses the inverse of the estimated noise variance as the weighting function.
- Positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace $\left(E^{\prime} * E * W\right)$. E is the matrix of prediction errors, with one column for each output. W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

- [] - The software chooses between the ' noise ' or using the identity matrix for W.

'Advanced'

Advanced is a structure with the field MaxSize. MaxSize specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

Output Arguments

opt

Option set containing the specified options for n4sid.

Examples

Create Default Options Set for State-Space Estimation Using Subspace Method

```
opt = n4sidOptions;
```


Specify Options for State-Space Estimation Using Subspace Method

Create an options set for n4sid using the 'zero' option to initialize the state. Set the Display to 'on'.

```
opt = n4sidOptions('InitialState','zero','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = n4sidOptions;
opt.InitialState = 'zero';
opt.Display = 'on';
```


References

[1] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control." Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596-604, 1990.
[2] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica, Vol. 30, 1994, pp. 61-74.
[3] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[4] Jansson, M. "Subspace identification and ARX modeling." 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, 2003.

See Also
idfilt | idpar | n4sid

ndims

Query number of dimensions of dynamic system model or model array

Syntax

n = ndims(sys)

Description

$\mathrm{n}=$ ndims(sys) is the number of dimensions of a dynamic system model or a model array sys. A single model has two dimensions (one for outputs, and one for inputs). A model array has $2+p$ dimensions, where $p \geq 2$ is the number of array dimensions. For example, a 2-by-3-by- 4 array of models has $2+3=5$ dimensions.

```
ndims(sys) = length(size(sys))
```


Examples

```
sys = rss(3,1,1,3);
ndims(sys)
ans =
    4
```

ndims returns 4 for this 3-by- 1 array of SISO models.

See Also
 size

neuralnet

Class representing neural network nonlinearity estimator for nonlinear ARX models

Syntax

```
net_estimator = neuralnet(Network)
```


Description

neuralnet is the class that encapsulates the neural network nonlinearity estimator. A neuralnet object lets you use networks, created using Neural Network Toolbox ${ }^{\text {TM }}$ software, in nonlinear ARX models.

The neural network nonlinearity estimator defines a nonlinear function $y=F(x)$, where F is a multilayer feed-forward (static) neural network, as defined in the Neural Network Toolbox software. y is a scalar and x is an m-dimensional row vector.

You create multi-layer feed-forward neural networks using Neural Network Toolbox commands such as feedforwardnet, cascadeforwardnet and linearlayer. When you create the network:

- Designate the input and output sizes to be unknown by leaving them at the default value of zero (recommended method). When estimating a nonlinear ARX model using the nlarx command, the software automatically determines the input-output sizes of the network.
- Initialize the sizes manually by setting input and output ranges to m-by-2 and 1-by-2 matrices, respectively, where m is the number of nonlinear ARX model regressors and the range values are minimum and maximum values of regressors and output data, respectively.

See "Examples" on page 1-655 for more information.
Use evaluate (net_estimator, x) to compute the value of the function defined by the neuralnet object net_estimator at input value x. When used for nonlinear ARX model estimation, x represents the model regressors for the output for which the neuralnet object is assigned as the nonlinearity estimator.

You cannot use neuralnet when Focus property of the idnlarx model is 'Simulation' because this nonlinearity estimator is considered to be nondifferentiable for estimation. Minimization of simulation error requires differentiable nonlinear functions.

Construction

net_estimator = neuralnet (Network) creates a neural network nonlinearity estimator based on the feed-forward (static) network object Network created using Neural Network Toolbox commands feedforwardnet, cascadeforwardnet, and linearlayer. Network must represent a static mapping between the inputs and output without I/O delays or feedback. The number of outputs of the network, if assigned, must be one. For a multiple-output nonlinear ARX models, create a separate neuralnet object for each output-that is, each estimator must represent a single-output network object.

Properties

Network
Neural network object, typically created using the Neural Network Toolbox commands feedforwardnet, cascadeforwardnet, and linearlayer.

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List Network property value
get(n)
n.Network
```

You can also use the set function to set the value of particular properties. For example:

```
set(d, 'Network', net_obj)
```

The first argument to set must be the name of a MATLAB variable.

Examples

Create a neural network nonlinearity estimator using a feed-forward neural network with three hidden layers, transfer functions of types logsig, radbas, and purelinand unknown input and output sizes:

```
% Create a neural network.
net = feedforwardnet([4 6 1]);
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'radbas';
net.layers{3}.transferFon = 'purelin';
% View the network diagram.
view(net)
% Create a neuralnet estimator.
net_estimator = neuralnet(net);
```

Create a single-layer, cascade-forward network with unknown input and output sizes and use this network for nonlinear ARX model estimation:

1 Create a cascade-forward neural network with 20 neurons and unknown inputoutput sizes.

```
net = cascadeforwardnet(20);
```

2 Create a neural network nonlinearity estimator.

```
net_estimator = neuralnet(net);
```

3 Estimate nonlinear ARX model.

```
% Create estimation data.
load twotankdata
Data = iddata(y, u, 0.2);
% Estimate model.
Model = nlarx(Data, [2 2 1], net_estimator);
% Compare model response to measured output signal.
compare(Data, Model)
```

Initialize the input-output sizes of a two-layer feed-forward neural network based on estimation data and use this network for nonlinear ARX estimation:

1 Create estimation data.

```
% Load estimation data.
load iddata7 z7
% Use only first }200\mathrm{ samples for estimation.
z7 = z7(1:200);
```

2 Create a template Nonlinear ARX model with no nonlinearity.

```
model = idnlarx([4 4 4 1 1], []);
```

This model has six regressors and is simply used to define the regressors. The range of regressor values for input-output data in $z 7$ is then used to set the input ranges in the neural network object, as shown in the next steps.
3 Obtain the model regressor values.

```
R = getreg(model, 'all', z7);
```

R is a matrix of regressor values for $z 7$.
4 Create a two-layer, feed-forward neural network and initialize the network input and output dimensions to 2 and 1, respectively.

```
% Use 5 neurons for first layer and 7 for second layer.
net = feedforwardnet([5 7]);
% Determine input range.
InputRange = [min(R); max(R)].';
% Initialize input dimensions of estimator.
net.inputs{1}.range = InputRange;
% Determine output range.
OutputRange = [min(z7.OutputData), max(z7.OutputData)];
% Initialize output dimensions of estimator.
net.outputs{net.outputConnect}.range = OutputRange;
% Create neuralnet estimator.
net_estimator = neuralnet(net);
```

5 Specify the nonlinearity estimator in the model.
model.Nonlinearity $=$ net_estimator;
6 Estimate the parameters of the network to minimize the prediction error between data and model.

```
% Estimate model.
model = nlarx(z7, model);
% Compare model's predicted response to measured output signal.
compare(z7(1:100), model,1)
```


More About

Algorithms

The nlarx command uses the train method of the network object, defined in the Neural Network Toolbox software, to compute the network parameter values.

See Also

nlarx | sigmoidnet | wavenet | treepartition | customnet | feedforwardnet | cascadeforwardnet | linearlayer

Tutorials

- "Identifying Nonlinear ARX Models"

nkshift

Shift data sequences

Syntax

```
Datas = nkshift(Data,nk)
```


Description

Data contains input-output data in the iddata format.
nk is a row vector with the same length as the number of input channels in Data.
Datas is an iddata object where the input channels in Data have been shifted according to nk . A positive value of $\mathrm{nk}(\mathrm{ku})$ means that input channel number ku is delayed nk(ku) samples.
nkshift supports both frequency- and time-domain data. For frequency-domain data it multiplies with $e^{i n k \omega T}$ to obtain the same effect as shifting in the time domain. For continuous-time frequency-domain data ($\mathrm{Ts}=0$), nk should be interpreted as the shift in seconds.
nkshift lives in symbiosis with the InputDelay property of linear identified models:

```
m1 = ssest(dat,4,'InputDelay',nk)
```

is related to

```
m2 = ssest(nkshift(dat,nk),4);
```

such that m 1 and m 2 are the same models, but m 1 stores the delay information and uses this information when computing the frequency response, for example. When using m 2 , the delay value must be accounted for separately when computing time and frequency responses.

See Also
idpoly | absorbDelay | idss | delayest

nlarx

Estimate nonlinear ARX model

Syntax

```
m = nlarx(data,[na nb nk])
m = nlarx(data,[na nb nk],Nonlinearity)
m = nlarx(data,[na nb nk],'Name',Value)
m = nlarx(data,LinModel)
m = nlarx(data,LinModel,Nonlinearity)
m = nlarx(data,LinModel,Nonlinearity,'PropertyName',PropertyValue)
```


Description

$m=$ nlarx(data,[na nb nk]) creates and estimates a nonlinear ARX model using a default wavelet network as its nonlinearity estimator. data is an iddata object. na, nb, and $n k$ are positive integers that specify the model orders and delays.
$m=n l a r x(d a t a,[n a n b n k], N o n l i n e a r i t y) ~ s p e c i f i e s ~ a ~ n o n l i n e a r i t y ~ e s t i m a t o r ~$ Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
$m=n l a r x(d a t a,[n a n b n k], ' N a m e ', V a l u e)$ constructs and estimates the model using options specified as idnlarx model property or idnlarx algorithm property name and value pairs. Specify Name inside single quotes.
$m=$ nlarx(data,LinModel) creates and estimates a nonlinear ARX model using a linear model (in place of [na $n b n k$]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly). LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of m, and the polynomials initialize the linear function of the nonlinearity estimator.
m = nlarx(data,LinModel,Nonlinearity) specifies a nonlinearity estimator Nonlinearity.
$m=$ nlarx(data,LinModel,Nonlinearity,'PropertyName',PropertyValue), constructs and estimates the model using options specified as idnlarx property name and value pairs.

Input Arguments
 data

Time-domain iddata object.

na nb nk

Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose i-jth entry gives the number of delayed j th outputs used to compute the i th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

Nonlinearity

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.

'wavenet ' or wavenet object	Wavelet network
(default)	Sigmoid network
'sigmoidnet ' or sigmoidnet object	Binary-tree
'treepartition' or treepartition object	Linear function
'linear' or [] or linear object	Neural network
neuralnet object	Custom network
customnet object	

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

LinModel

Discrete time input-output polynomial model of ARX structure (idpoly), typically estimated using the arx command.

Default:

Examples

Estimate nonlinear ARX model with default settings:

```
load twotankdata
Ts = 0.2; % Sampling interval is 0.2 min
z = iddata(y,u,Ts); % constructs iddata object
m = nlarx(z,[4 4 1]) % na=nb=4 and nk=1
```

Estimate nonlinear ARX model with a specific nonlinearity:

```
    NL = wavenet('NumberOfUnits',5);
% Wavelet network has 5 units
m = nlarx(z,[4 4 1],NL)
```

Estimate nonlinear ARX model with a custom network nonlinearity:

```
% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
    g = - 2*x.*f;
    a = 0.2;
end
% Estimate nonlinear ARX model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = customnet(H);
m = nlarx(data,[na nb nk],CNetw)
```

Estimate nonlinear ARX model with specific algorithm settings:

```
m = nlarx(z,[4 4 1],'sigmoidnet','MaxIter',50,...
    'Focus','Simulation')
```

```
% Maximum number of estimation iterations is 50.
% Estimation focus 'simulation' optimizes model for
% simulation applications.
```

Estimate nonlinear ARX model from time series data:

```
t = 0:0.01:10;
y = 10*sin(2*pi*10*t)+rand(size(t));
z = iddata(y',[],0.01);
m = nlarx(z,2,'sigmoid')
compare(z,m,1) % compare 1-step-ahead
    % prediction of response
```

Estimate nonlinear ARX model and avoid local minima:

```
% Estimate initial model.
    load iddata1
    m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])
% Perturb parameters slightly to avoid local minima:
    m2=init(m1)
% Estimate model with perturbed initial parameter values:
    m2=nlarx(z1,m2)
```

Estimate nonlinear ARX model with custom regressors:

```
% Load sample data z1 (iddata object).
    load iddata1
% Estimate the model parameters:
    m = nlarx(z1,[0 O 0],'linear','CustomReg',...
                                    {'y1(t-1)^2',...
                                    'y1(t-2)*u1(t-3)'})
% na=nb=nk=0 means there are no standard regressors.
% 'linear' means that the nonlinear estimator has only
% the linear function.
```

Estimate nonlinear ARX model with custom regressor object:

```
% Load sample data z1 (iddata object):
    load iddata1
% Define custom regressors as customreg objects:
    C1 = customreg(@(x)x^2, {'y1'}, [1]); % y1(t-1)^2
    C2 = customreg(@(x,y) x*y,{'y1', 'u1'},...
    [2 3]); % y1(t-2)*u1(t-3)
    C = [C1, C2]; % object array of custom regressors
% Estimate model with custom regressors:
```

```
    m = nlarx(z1,[0 O 0],'linear','CustomReg',C);
% List all model regressors:
getreg(m)
```

Estimate nonlinear ARX model and search for optimum regressors for input to the nonlinear function:

```
load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...
    'NonlinearRegressors','search');
m.NonlinearRegressors
% regressors indices in nonlinear function
```

Estimate nonlinear ARX model with selected regressors as inputs to the nonlinear function:

```
    load iddata1
    m = nlarx(z1,[4 4 1],'sigmoidnet',...
                            'NonlinearReg', 'input');
% Only input regressors enter the nonlinear function.
% m is linear in past outputs.
```

Estimate nonlinear ARX model with no linear term in the nonlinearity estimator:

```
load iddata1
SNL = sigmoidnet('LinearTerm','off')
m = nlarx(z1,[2 2 1],SNL);
```

Estimate regularized nonlinear ARX model using a large number of units.

```
load regularizationExampleData.mat nldata
Orders = [1 2 1];
NL = sigmoidnet('NumberOfUnits',30);
% unregularized estimate
sys = nlarx(nldata, Orders, NL);
% regularized estimate using Lambda = 1e-8;
al = sys.Algorithm;
al.Regularization.Lambda = 1e-8;
sysr = nlarx(nldata, Orders, NL, 'Algorithm',al);
compare(nldata, sys, sysr);
```

Estimate MIMO nonlinear ARX model that has the same nonlinearity estimator for all output channels:

```
m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
```

```
    sigmoidnet('num',7))
% m uses a sigmoid network with 7 units
% for all output channels.
```

Estimate MIMO nonlinear ARX model with different nonlinearity estimator for each output channel:

```
    m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
    ['wavenet'; sigmoidnet('num',7)])
% first output channel uses a wavelet network
% second output channel uses a sigmoid network with 7 units
```

Estimate a nonlinear ARX model using an ARX model:
\% Estimate linear ARX model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
LinearModel = arx(DetrendedData, [2 1 1], 'Focus', 'Simulation');
\% Estimate nonlinear ARX model using linear model to model
\% output saturation in data.
NonlinearModel = nlarx(ThrottleData, LinearModel, 'sigmoidnet',... 'Focus', 'Simulation')

More About

- "Identifying Nonlinear ARX Models"
- "Using Linear Model for Nonlinear ARX Estimation"
- "Regularized Estimates of Model Parameters"

See Also

addreg | customreg | getreg | idnlarx | init | polyreg

Tutorials

. ""

- ""

nlhw

Estimate Hammerstein-Wiener model

Syntax

```
m = nlhw(data,[nb nf nk])
m = nlhw(data,[nb nf nk],InputNL,OutputNL)
m = nlhw(data,[nb nf nk],InputNL,OutputNL,'Name',Value)
m = nlhw(data,LinModel)
m = nlhw(data,LinModel,InputNL,OutputNL)
m =
nlhw(data,LinModel,InputNL,OutputNL,'PropertyName',PropertyValue)
```


Description

$m=n l h w(d a t a,[n b n f n k])$ creates and estimates a Hammerstein-Wiener model using piecewise linear functions as its input and output nonlinearity estimators. data is a time-domain iddata object. $n b, n f$, and $n k$ are positive integers that specify the model orders and delay. $n b$ is the number of zeros plus $1, n f$ is the number of poles, and $n k$ is the input delay.
$m=n l h w(d a t a,[n b n f n k], I n p u t N L, O u t p u t N L)$ specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
$m=$ nlhw(data, [nb nf nk],InputNL,OutputNL, 'Name', Value) creates and estimates the model using options specified as idnlhw model property or idnlhw algorithm property name and value pairs. Specify Name inside single quotes.
$m=n l h w(d a t a, L i n M o d e l)$ creates and estimates a Hammerstein-Wiener model using a linear model (in place of [nb $n f n k$]), and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete-time input-output polynomial model of Output-Error (OE) structure (idpoly), or state-space model with no disturbance component (idss with $K=0$), or transfer function model (idtf). LinModel sets the model orders, input delay, B and F polynomial values, input-output names and units, sampling time and time units of m.
$m=$ nlhw(data,LinModel,InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL.

$m=$

nlhw(data,LinModel,InputNL,OutputNL, 'PropertyName', PropertyValue) creates and estimates the model using options specified as idnlhw property name and value pairs.

Input Arguments

data
Time-domain iddata object.

```
nb, nf, nk
```

Order of the linear transfer function, where $n b$ is the number of zeros plus $1, n f$ is the number of poles, and $n k$ is the input delay.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices whose i-jth entry specifies the orders and delay of the transfer function from the j th input to the i th output.

InputNL, OutputNL

Input and output nonlinearity estimators, respectively, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
'pwlinear' or pwlinear object (default)
'sigmoidnet' or sigmoidnet object
'wavenet' or wavenet object
'saturation' or saturation object
'deadzone' or deadzone object
'poly1d' or poly1d object
'unitgain' or unitgain object
customnet object

Piecewise linear function
Sigmoid network
Wavelet network
Saturation
Dead zone
One-
dimensional polynomial
Unit gain
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

LinModel

Discrete time linear model, specified as one of the following:

- Input-output polynomial model of Output-Error (OE) structure (idpoly)
- State-space model with no disturbance component (idss with $K=0$)
- Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid or tfest.

Examples

Estimate a Hammerstein-Wiener model:

```
load iddata3
m1=nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
```

Estimate a Hammerstein model with saturation:

```
load iddata1
% Create a saturation object with lower limit of 0
% and upper limit of 5
InputNL = saturation('LinearInterval', [0 5]);
% Estimate model with no output nonlinearity
m = nlhw(z1,[2 3 0],InputNL,[]);
```

Estimate a Wiener model with a nonlinearity containing 5 sigmoid units:

```
load iddata1
m2 = nlhw(z1,[2 3 0],[],sigmoidnet('num', 5))
```

Estimate a Hammerstein-Wiener model with a custom network nonlinearity:

```
% Load data
```

```
load twotankdata;
z = iddata(y, u, 0.2, 'Name', 'Two tank system');
z1 = z(1:1000);
% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
    g = - 2*x.*f;
    a = 0.2;
end
% Estimate Hammerstein-Wiener model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = customnet(H);
m = nlhw(z1,[5 1 3],CNetw,[])
```

Estimate a MISO Hammerstein model with a different nonlinearity for each input:

```
m = nlhw(data,[nb,nf,nk],...
    [sigmoidnet;pwlinear],...
    [])
```

Refine a Hammerstein-Wiener model using successive calls of $n l h w:$

```
load iddata3
m3 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
m3 = nlhw(z3,m3)
% Retrieves the linear block
LinearBlock = m3.LinearModel
```

Estimate a Hammerstein-Wiener model and avoid local minima:

```
load iddata3
% Original model
M1 = nlhw(z3, [2 2 1], 'sigm','wave');
% Randomly perturbs parameters about nominal values
M1p = init(M1);
% Estimates parameters of perturbed model
M2 = pem(z3, M1p);
```

Estimate a regularized Hammerstein-Wiener model using a large number of units in the input-output nonlinearity functions.

```
load regularizationExampleData.mat nldata;
% unregularized estimate
Orders = [1 2 1];
UNL = sigmoidnet('NumberOfUnits',30);
YNL = pwlinear('Num',20);
% unregularized estimate
sys = nlhw(nldata(1:500), Orders, UNL, YNL);
% regularized estimate using Lambda = .1;
al = sys.Algorithm;
al.Regularization.Lambda = .1;
sysr = nlhw(nldata(1:500), Orders, UNL, YNL,'Algorithm',al);
compare(nldata(500:end), sys, sysr);
```

Estimate default Hammerstein-Wiener model using an input-output polynomial model of Output-Error (OE) structure:

```
% Estimate linear OE model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[1 2 1],opt);
% Estimate Hammerstein-Wiener model using OE model as
% its linear component and saturation as its output nonlinearity.
NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation')
```


More About

- "Identifying Hammerstein-Wiener Models"
- "Using Linear Model for Hammerstein-Wiener Estimation"
- "Regularized Estimates of Model Parameters"

See Also

customnet | linearize | idnlhw | pem | poly1d | deadzone | findop(idnlhw) | linapp | pwlinear | saturation | sigmoidnet | unitgain | wavenet

Tutorials

```
. ""
```

- ""

noise2meas

Noise component of model

Syntax

```
noise_model = noise2meas(sys)
noise_model = noise2meas(sys,noise)
```


Description

noise_model = noise2meas(sys) returns the noise component, noise_model, of a linear identified model, sys. Use noise2meas to convert a time-series model (no inputs) to an input/output model. The converted model can be used for linear analysis, including viewing pole/zero maps, and plotting the step response.
noise_model = noise2meas(sys, noise) specifies the noise variance normalization method.

Input Arguments

sys

Identified linear model.

noise

Noise variance normalization method.
noise is a string that takes one of the following values:

- 'innovations ' - Noise sources are not normalized and remain as the innovations process.
- 'normalize' - Noise sources are normalized to be independent and of unit variance.

Default: 'innovations'

Output Arguments

noise_model

Noise component of sys.
sys represents the system

$$
y(t)=G u(t)+H e(t)
$$

G is the transfer function between the measured input, $u(t)$, and the output, $y(t) . H$ is the noise model and describes the effect of the disturbance, $e(t)$, on the model's response.

An equivalent state-space representation of sys is

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t) \\
e(t) & =L v(t)
\end{aligned}
$$

$v(t)$ is white noise with independent channels and unit variances. The white-noise signal $e(t)$ represents the model's innovations and has variance $L L^{T}$. The noise-variance data is stored using the NoiseVariance property of sys.

- If noise is 'innovations', then noise2meas returns H and noise_model represents the system

$$
y(t)=H e(t)
$$

An equivalent state-space representation of noise_model is

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+K e(t) \\
y(t) & =C x(t)+e(t)
\end{aligned}
$$

noise2meas returns the noise channels of sys as the input channels of noise_model. The input channels are named using the format 'e@yk', where yk corresponds to the OutputName property of an output. The measured input channels of sys are discarded and the noise variance is set to zero.

- If noise is 'normalize', then noise2meas first normalizes

$$
e(t)=\operatorname{Lv}(t)
$$

noise_model represents the system

$$
y(t)=H L v(t)
$$

or, equivalently, in state-space representation

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+K L v(t) \\
& y(t)=C x(t)+L v(t)
\end{aligned}
$$

The input channels are named using the format 'v@yk', where yk corresponds to the OutputName property of an output.

The model type of noise_model depends on the model type of sys.

- noise_model is an idtf model if sys is an idproc model.
- noise_model is an idss model if sys is an idgrey model.
- noise_model is the same type of model as sys for all other model types.

To obtain the model coefficients of noise_model in state-space form, use ssdata. Similarly, to obtain the model coefficients in transfer-function form, use tfdata.

Examples

Convert Noise Component of Linear Identified Model into Input/Output Model

Convert a time-series model to an input/output model that may be used by linear analysis tools.

Identify a time-series model.

```
load iddata9 z9
```

sys = ar(z9,4,'ls');
sys is an idpoly model with no inputs.
Convert sys to a measured model.

```
noise_model = noise2meas(sys);
```

noise_model is an idpoly model with one input.
You can use noise_model for linear analysis functions such as step, iopzmap, etc.

Normalizing Noise Variance

Convert an identified linear model to an input/output model, and normalize its noise variance.

Identify a linear model using data.

```
load twotankdata;
z = iddata(y,u,0.2);
sys = ssest(z,4);
```

sys is an idss model, with a noise variance of $6.6211 \mathrm{e}-06$. The value of L is sqrt(sys.NoiseVariance), which is 0.0026 .

View the disturbance matrix.
sys.K
ans =
0.2719
1.6570
-0.6318
-0.2877

Obtain a model that absorbs the noise variance of sys.

```
noise_model_normalize = noise2meas(sys,'normalize');
```

noise_model_normalize is an idpoly model.

View the B matrix for noise_model_normalize
noise_model_normalize.B

ans $=$

0.0007
0.0043

- 0.0016
-0.0007

As expected, noise_model_normalize.B is equal to L*sys.K.
Compare the bode response with a model that ignores the noise variance of sys.

```
noise_model_innovation = noise2meas(sys,'innovations');
bodemag(noise_model_normalize,noise_model_innovation);
legend('Normalized noise variance','Ignorēd noise variance');
```


Bode Diagram

The difference between the bode magnitudes of the noise_model_innovation and noise_model_normalized is approximately 51 dB . As expected, the magnitude difference is approximately equal to $20 * \log 10(\mathrm{~L})$.

See Also
idssdata | noisecnv | spectrum | tfdata | zpkdata

noisecnv

Transform identified linear model with noise channels to model with measured channels only

Syntax

```
mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'normalize')
```


Description

```
mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'normalize')
```

mod is any linear identified model, idproc, idtf, idgrey, idpoly, or idss.
The noise input channels in mod are converted as follows: Consider a model with both measured input channels u ($n u$ channels) and noise channels e ($n y$ channels) with covariance matrix Λ :

$$
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
$$

where L is a lower triangular matrix. Note that mod. NoiseVariance $=\Lambda$. The model can also be described with unit variance, using a normalized noise source v :

$$
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
$$

- mod1 = noisecnv(mod) converts the model to a representation of the system $[G H]$ with $n u+n y$ inputs and $n y$ outputs. All inputs are treated as measured, and mod1 does not have any noise model. The former noise input channels have names e@yname, where yname is the name of the corresponding output.
- mod2 $=$ noisecnv(mod, 'norm') converts the model to a representation of the system [G HL] with $n u+n y$ inputs and $n y$ outputs. All inputs are treated as measured, and mod2 does not have any noise model. The former noise input channels have names v@yname, where yname is the name of the corresponding output. Note that the noise variance matrix factor L typically is uncertain (has a nonzero covariance). This is taken into account in the uncertainty description of mod2.
- If mod is a time series, that is, $n u=0$, mod1 is a model that describes the transfer function H with measured input channels. Analogously, mod2 describes the transfer function $H L$.

Note the difference with subreferencing:

- mod('m') gives a description of G only.
- mod (: , []) gives a description of the noise model characteristics as a timeseries model, that is, it describes H and also the covariance of e. In contrast, noisecnv (m(:, [])) or noise2meas (m) describe just the transfer function H. To obtain a description of the normalized transfer function $H L$, use noisecnv (m (: , []), 'normalize') or noise2meas('normalize').

Converting the noise channels to measured inputs is useful to study the properties of the individual transfer functions from noise to output. It is also useful for transforming identified linear models to representations that do not handle disturbance descriptions explicitly.

Examples

Identify a model with a measured component (G) and a non-trivial noise component (H). Compare the amplitude of the measured component's frequency response to the noise component's spectrum amplitude. You must convert the noise component into a measured one by using noisecnv if you want to compare its behavior against a truly measured component.

```
load iddata2 z2
sys1 = armax(z2,[2 2 2 1]); % model with noise component
sys2 = tfest(z2,3); % model with a trivial noise component
sys1 = noisecnv(sys1);
sys2 = noisecnv(sys2);
bodemag(sys1,sys2)
```


See Also
 idssdata | noise2meas | tfdata | zpkdata

norm

Norm of linear model

Syntax

```
n = norm(sys)
n = norm(sys,2)
n = norm(sys,inf)
[n,fpeak] = norm(sys,inf)
[...] = norm(sys,inf,tol)
```


Description

$\mathrm{n}=$ norm(sys) or $\mathrm{n}=$ norm(sys,2) return the H_{2} norm of the linear dynamic system model sys.
$\mathrm{n}=$ norm(sys,inf) returns the H_{∞} norm of sys.
[n,fpeak] = norm(sys,inf) also returns the frequency fpeak at which the gain reaches its peak value.
[...] = norm(sys,inf,tol) sets the relative accuracy of the H_{∞} norm to tol.

Input Arguments

sys

Continuous- or discrete-time linear dynamic system model. sys can also be an array of linear models.

tol

Positive real value setting the relative accuracy of the H_{∞} norm.
Default: 0.01

Output Arguments

n

H_{2} norm or H_{∞} norm of the linear model sys.
If sys is an array of linear models, n is an array of the same size as sys. In that case each entry of n is the norm of each entry of sys.

fpeak

Frequency at which the peak gain of sys occurs.

Examples

This example uses norm to compute the H_{2} and H_{∞} norms of a discrete-time linear system.

Consider the discrete-time transfer function

$$
H(z)=\frac{z^{3}-2.841 z^{2}+2.875 z-1.004}{z^{3}-2.417 z^{2}+2.003 z-0.5488}
$$

with sample time 0.1 second.
To compute the H_{2} norm of this transfer function, enter:

```
H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)
```

These commands return the result:

```
ans =
```

 1.2438
 To compute the H_{∞} infinity norm, enter:
[ninf,fpeak] = norm(H,inf)
This command returns the result:

```
ninf =
```

```
    2.5488
fpeak =
    3.0844
```

You can use a Bode plot of $H(z)$ to confirm these values.

```
bode(H)
```

grid on;

The gain indeed peaks at approximately $3 \mathrm{rad} / \mathrm{sec}$. To find the peak gain in dB , enter: $20 * \log 10$ (ninf)

This command produces the following result:
ans $=$
8.1268

More About

H2 norm

The H_{2} norm of a stable continuous-time system with transfer function $H(s)$, is given by:

$$
\|H\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[H(j \omega)^{H} H(j \omega)\right] d \omega} .
$$

For a discrete-time system with transfer function $H(z)$, the H_{2} norm is given by:

$$
\|H\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \operatorname{Trace}\left[H\left(e^{j \omega}\right)^{H} H\left(e^{j \omega}\right)\right] d \omega}
$$

The H_{2} norm is equal to the root-mean-square of the impulse response of the system. The H_{2} norm measures the steady-state covariance (or power) of the output response $y=H w$ to unit white noise inputs w :

$$
\|H\|_{2}^{2}=\lim _{t \rightarrow \infty} E\left\{y(t)^{T} y(t)\right\}, \quad E\left(w(t) w(\tau)^{T}\right)=\delta(t-\tau) I
$$

The H_{2} norm is infinite in the following cases:

- sys is unstable.
- sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the frequency $\omega=\infty$).
norm(sys) produces the same result as
sqrt(trace(covar(sys,1)))

H-infinity norm

The H_{∞} norm (also called the L_{∞} norm) of a SISO linear system is the peak gain of the frequency response. For a MIMO system, the H_{∞} norm is the peak gain across all input/ output channels. Thus, for a continuous-time system $H(s)$, the H_{∞} norm is given by:

$$
\begin{aligned}
& \|H(s)\|_{\infty}=\max _{\omega}|H(j \omega)| \\
& \|H(s)\|_{\infty}=\max _{\omega} \sigma_{\max }(H(j \omega))
\end{aligned}
$$

where $\sigma_{\max }(\cdot)$ denotes the largest singular value of a matrix.
For a discrete-time system $H(z)$:

$$
\begin{aligned}
& \|H(z)\|_{\infty}=\max _{\theta \in[0, \pi]} H\left(e^{j \theta}\right) \mid \\
& \|H(z)\|_{\infty}=\max _{\theta \in[0, \pi]} \sigma_{\max }\left(H\left(e^{j \theta}\right)\right)
\end{aligned}
$$

The H_{∞} norm is infinite if sys has poles on the imaginary axis (in continuous time), or on the unit circle (in discrete time).

Algorithms

norm first converts sys to a state space model.
norm uses the same algorithm as covar for the H_{2} norm. For the H_{∞} norm, norm uses the algorithm of [1]. norm computes the H_{∞} norm (peak gain) using the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

References

[1] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H_{∞}-Norm of a Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
freqresp | sigma

nparams

Number of model parameters

Syntax

np = nparams(sys)
np = nparams(sys,'free')

Description

$n p=n p a r a m s(s y s)$ returns the number of parameters in the identified model sys.
$\mathrm{np}=$ nparams(sys,'free') returns the number free estimation parameters in the identified model sys.

Note: Not all model coefficients are parameters, such as the leading entry of the denominator polynomials in idpoly and idtf models.

Input Arguments

sys

Identified linear model.

Output Arguments

np
Number of parameters of sys.
For the syntax np = nparams(sys,'free'), np is the number of free estimation parameters of sys.
idgrey models can contain non-scalar parameters. nparams accounts for each individual entry of the non-scalar parameters in the total parameter count.

Examples

Obtain the number of parameters of a transfer function model.

```
sys = idtf(1,[11 2]);
np = nparams(sys);
```

Obtain the number of free estimation parameters of a transfer function model.

```
sys0 = idtf([1 0],[\begin{array}{lll}{1}&{2}&{0}\end{array}]);
sys0.Structure.den.Free(3) = false;
np = nparams(sys,'free');
```


See Also

```
idfrd| idgrey | idpoly | idproc | idss | idtf | size
```


nuderst

Set step size for numerical differentiation

Syntax

```
nds = nuderst(pars)
```


Description

Many estimation functions use numerical differentiation with respect to the model parameters to compute their values.

The step size used in these numerical derivatives is determined by the nuderst command. The output argument nds is a row vector whose kth entry gives the increment to be used when differentiating with respect to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the maximum of 10^{-4} times the absolute value of the current parameter and 10^{-7}. You can adjust this to the actual value of the corresponding parameter by editing nuderst. Note that the nominal value, for example 0 , of a parameter might not reflect its normal size.

nyquist

Nyquist plot of frequency response

Syntax

```
nyquist(sys)
nyquist(sys,w)
nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')
[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)
[re,im,w,sdre,sdim] = nyquist(sys)
```


Description

nyquist creates a Nyquist plot of the frequency response of a "dynamic system model". When invoked without left-hand arguments, nyquist produces a Nyquist plot on the screen. Nyquist plots are used to analyze system properties including gain margin, phase margin, and stability.
nyquist (sys) creates a Nyquist plot of a dynamic system sys. This model can be continuous or discrete, and SISO or MIMO. In the MIMO case, nyquist produces an array of Nyquist plots, each plot showing the response of one particular I/O channel. The frequency points are chosen automatically based on the system poles and zeros.
nyquist (sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval, set $w=\{w m i n, w m a x\}$. To use particular frequency points, set w to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. Frequencies must be in rad/ TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.
nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w) superimposes the Nyquist plots of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax nyquist(sys1,'PlotStyle1', ...,sysN,'PlotStyleN').
[re,im,w] = nyquist(sys) and [re,im] = nyquist(sys,w) return the real and imaginary parts of the frequency response at the frequencies w (in rad/TimeUnit). re and im are 3-D arrays (see "Arguments" below for details).
[re,im,w,sdre,sdim] = nyquist(sys) also returns the standard deviations of re and im for the identified system sys.

Arguments

The output arguments re and im are 3-D arrays with dimensions
(number of outputs) \times (number of inputs) \times (length of w)
For SISO systems, the scalars $r e(1,1, k)$ and $\operatorname{im}(1,1, k)$ are the real and imaginary parts of the response at the frequency $\omega_{k}=\mathrm{w}(\mathrm{k})$.

$$
\begin{aligned}
& \operatorname{re}(1,1, k)=\operatorname{Re}\left(h\left(j \omega_{k}\right)\right) \\
& \operatorname{im}(1,1, k)=\operatorname{Im}\left(h\left(j w_{k}\right)\right)
\end{aligned}
$$

For MIMO systems with transfer function $H(s)$, re (: , : , k) and im (: , : , k) give the real and imaginary parts of $H\left(j \omega_{k}\right)$ (both arrays with as many rows as outputs and as many columns as inputs). Thus,

$$
\begin{aligned}
& \operatorname{re}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\operatorname{Re}\left(h_{i j}\left(j \omega_{k}\right)\right) \\
& \operatorname{im}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\operatorname{Im}\left(h_{i j}\left(j \omega_{k}\right)\right)
\end{aligned}
$$

where $h_{i j}$ is the transfer function from input j to output i.

Examples

Nyquist Plot of Dynamic System

Plot the Nyquist response of the system

$$
\begin{aligned}
& H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
& \begin{array}{l}
H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ; \\
\text { nyquist(H) }
\end{array}
\end{aligned}
$$

The nyquist function has support for M-circles, which are the contours of the constant closed-loop magnitude. M-circles are defined as the locus of complex numbers where

$$
T(j \omega)=\left|\frac{G(j \omega)}{1+G(j \omega)}\right|
$$

is a constant value. In this equation, ω is the frequency in radians/TimeUnit, where TimeUnit is the system time units, and G is the collection of complex numbers that satisfy the constant magnitude requirement.

To activate the grid, select Grid from the right-click menu or type grid
at the MATLAB prompt. This figure shows the M circles for transfer function H.

You have two zoom options available from the right-click menu that apply specifically to Nyquist plots:

- Tight -Clips unbounded branches of the Nyquist plot, but still includes the critical point (-1, 0)
- On (-1,0) - Zooms around the critical point ($-1,0$)

Also, click anywhere on the curve to activate data markers that display the real and imaginary values at a given frequency. This figure shows the nyquist plot with a data marker.

Nyquist Plot of Identified Model with Response Uncertainty

Compute the standard deviation of the real and imaginary parts of frequency response of an identified model. Use this data to create a 3σ plot of the response uncertainty. (Identified models require System Identification Toolbox.)

Identify a transfer function model based on data. Obtain the standard deviation data for the real and imaginary parts of the frequency response.

```
load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(-10*pi,10*pi,512);
[re, im, ~, sdre, sdim] = nyquist(sys_p,w);
```

sys_p is an identified transfer function model. sdre and sdim contain 1-std standard deviation uncertainty values in re and im respectively.

Create a Nyquist plot showing the response and its 3σ uncertainty:

```
re = squeeze(re);
im = squeeze(im);
sdre = squeeze(sdre);
sdim = squeeze(sdim);
plot(re,im,'b', re+3*sdre, im+3*sdim, 'k:', re-3*sdre, im-3*sdim, 'k:')
```


More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Algorithms

See bode.

See Also

bode | evalfr | freqresp | ltiview | nichols | sigma

nyquistoptions

List of Nyquist plot options

Syntax

P = nyquistoptions
P = nyquistoptions('cstprefs')

Description

P = nyquistoptions returns the default options for Nyquist plots. You can use these options to customize the Nyquist plot appearance using the command line.

P = nyquistoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

The following table summarizes the Nyquist plot options.

Option	Description
Title, XLabel, YLabel	Label text and style
TickLabel	Tick label style
Grid	Show or hide the grid Specified as one of the following strings: ' off ' ' ' 'on ' Default: ' off ' Limit modes
XlimMode, YlimMode	Axes limits
Xlim, Ylim	Grouping of input-output pairs Specified as one of the following strings: ' none ' l'inputs ' I 'output ' I 'all' ' Default: ' none '
IOGrouping	Input and output label styles
InputLabels, OutputLabels	

Option	Description
InputVisible, OutputVisible	Visibility of input and output channels

Option	Description
FreqUnits	Frequency units, specified as one of the following strings: - 'Hz' - 'rad/second' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond ' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day' - 'cycles/week' - 'cycles/month' - 'cycles/year' Default: 'rad/s' You can also specify 'auto' which uses frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property. For

Option	Description
	multiple systems with different time units, the units of the first system are used.
MagUnits	Magnitude units Specified as one of the following strings: ' dB ' \| 'abs' Default: ' dB '
PhaseUnits	Phase units Specified as one of the following strings: 'deg ' \| 'rad' Default: 'deg '
ShowFullContour	Show response for negative frequencies Specified as one of the following strings: 'on' \| 'off' Default: ' on '
ConfidenceRegionNumbe	Number of standard deviations to use to plotting the response confidence region (identified models only). Default: 1.
ConfidenceRegionDisplay	The frequency spacing of confidence ellipses. For identified models only. Default: 5, which means the confidence ellipses are shown at every 5th frequency sample.

Examples

This example shows how to create a Nyquist plot displaying the full contour (the response for both positive and negative frequencies).
$\mathrm{P}=$ nyquistoptions;
P.ShowFullContour = 'on';
$h=$ nyquistplot(tf(1, $[1, .2,1]), P)$;

See Also

nyquist | nyquistplot | getoptions | setoptions | showConfidence | setoptions

nyquistplot

Nyquist plot with additional plot customization options

Syntax

```
h = nyquistplot(sys)
nyquistplot(sys,{wmin,wmax})
nyquistplot(sys,w)
nyquistplot(sys1,sys2,...,w)
nyquistplot(AX,...)
nyquistplot(..., plotoptions)
```


Description

h = nyquistplot (sys) draws the Nyquist plot of the "dynamic system model" sys. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type

```
help nyquistoptions
```

for a list of available plot options.
The frequency range and number of points are chosen automatically. See bode for details on the notion of frequency in discrete time.
nyquistplot(sys, \{wmin, wmax\}) draws the Nyquist plot for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys).
nyquistplot (sys,w) uses the user-supplied vector w of frequencies (in rad/ TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys) at which the Nyquist response is to be evaluated. See logspace to generate logarithmically spaced frequency vectors.
nyquistplot(sys1,sys2,...,w) draws the Nyquist plots of multiple models sys 1, sys $2, \ldots$ on a single plot. The frequency vector w is optional. You can also specify a color, line style, and marker for each system, as in
nyquistplot(sys1,'r',sys2,'y--',sys3,'gx')
nyquistplot (AX, ...) plots into the axes with handle AX.
nyquistplot(..., plotoptions) plots the Nyquist response with the options specified in plotoptions. Type
help nyquistoptions
for more details.

Examples

Example 1

Customize Nyquist Plot Frequency Units

Plot the Nyquist frequency response and change the units to rad/s.

```
sys = rss(5);
h = nyquistplot(sys);
% Change units to radians per second.
setoptions(h,'FreqUnits','rad/s');
```


Example 2

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 1 -std confidence regions rendered at every 50 th frequency sample.

```
load iddata1
sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2
sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6
```

Both models produce about 76\% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot:

```
w = linspace(10,10*pi,256);
h = nyquistplot(sys1,sys2,w);
setoptions(h, 'ConfidenceRegionDisplaySpacing',50, 'ShowFullContour', 'off');
```

Right-click to turn on the confidence region characteristic by using the Characteristics> Confidence Region.

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
showConfidence | getoptions | nyquist | setoptions

Oe

Estimate Output-Error polynomial model using time or frequency domain data

Syntax

```
sys = oe(data,[nb nf nk])
sys = oe(data,[nb nf nk],Name,Value)
sys = oe(data,init_sys)
sys = oe(data,___,opt)
```


Description

sys $=0 e(d a t a,[n b$ nf nk]) estimates an Output-Error model, sys, represented by:

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
$$

$y(t)$ is the output, $u(t)$ is the input, and $e(t)$ is the error.
sys is estimated for the time- or frequency-domain, measured input-output data, data. The orders, [nb nf nk], parameterize the estimated polynomial.
sys = oe(data, [nb nf nk],Name, Value) specifies model structure attributes using additional options specified by one or more Name,Value pair arguments.
sys = oe(data,init_sys) uses the Output-Error structure polynomial model (idpoly) init_sys to configure the initial parameterization of sys.
sys = oe(data, \qquad , opt) estimates a polynomial model using the option set, opt, to specify estimation behavior.

Input Arguments

data
Estimation data.

For time domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:

- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

For multi-experiment data, the sample times and inter-sample behavior of all the experiments must match.

[nb nf nk]

Output error model orders.
For a system represented by:

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
$$

where $y(t)$ is the output, $u(t)$ is the input and $e(t)$ is the error.

- nb - Order of the B polynomial +1 . nb is an $N y$-by- $N u$ matrix. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nf - Order of the F polynomial. nf is an $N y$-by- $N u$ matrix. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nk - Input delay, expressed as the number of samples. nk is an $N y$-by- $N u$ matrix. $N y$ is the number of outputs and $N u$ is the number of inputs. The delay appears as leading zeros of the B polynomial.

For estimation using continuous-time data, only specify [nb nf] and omit nk.

init_sys

Polynomial model that configures the initial parameterization of sys.

Specify init_sys as an idpoly model having the Output-Error structure.
Use the Structure property of init_sys to configure initial guesses and constraints for $B(q)$ and $F(q)$.

To specify an initial guess for, say, the $F(q)$ term of init_sys, set init_sys.Structure.f.Value as the initial guess.

To specify constraints for, say, the $B(q)$ term of init_sys:

- Set init_sys.Structure.b.Minimum to the minimum $B(q)$ coefficient values
- Set init_sys.Structure.b.Maximum to the maximum $B(q)$ coefficient values
- Set init_sys.Structure.b.Free to indicate which $B(q)$ coefficients are free for estimation

If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report.OptionsUsed are used.

opt

Estimation options.
opt is an options set, created using oeOptions, that specifies estimation options including:

- Estimation objective
- Handling of initial conditions
- Numerical search method and the associated options

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'InputDelay'

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

'ioDelay'

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts. You can specify ioDelay as an alternative to the nk value. Doing so simplifies the model structure by reducing the number of leading zeros the B polynomial. In particular, you can represent max (nk-1, 0) leading zeros as input/output delays using ioDelay instead.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array. Each entry of this array is a numerical value that represents the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

Output Arguments

sys

Identified Output-Error polynomial model.
sys is an idpoly model which encapsulates the identified Output Error model and the associated parameter covariance data.

Examples

Estimate Continuous-Time Model Using Frequency Response

Obtain the estimation data.

```
filename = fullfile(matlabroot,'examples','ident','oe_data1.mat');
load(filename);
```

data, an idfrd object, contains the continuous-time frequency response for the following model:

$$
G(s)=\frac{s+3}{s^{3}+2 s^{2}+s+1}
$$

Estimate the model.

```
nb = 2;
nk = 3;
sys = oe(data,[nb nk]);
```

Evaluate the goodness of the fit.
compare(data,sys);

Estimate Output-Error Model Using Regularization

Estimate a high-order OE model from data collected by simulating a high-order system. Determine the regularization constants by trial and error and use the values for model estimation.

Load data.
load regularizationExampleData.mat mOsimdata
Estimate an unregularized OE model of order 30.
m1 = oe(mOsimdata, [30 30 1]);
Obtain a regularized OE model by determining Lambda value using trial and error.

```
opt = oeOptions;
opt.Regularization.Lambda = 1;
m2 = oe(mOsimdata,[30 30 1],opt);
```

Compare the model outputs with the estimation data.

```
opt = compareOptions('InitialCondition','z');
compare(m0simdata, m1, m2, opt);
```


The regularized model m 2 produces a better fit than the unregularized model m 1 .
Compare the variance in the model responses.
h = bodeplot(m1,m2);
opt = getoptions(h);

```
opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 3;
opt.PhaseMatching = 'on';
setoptions(h,opt);
showConfidence(h);
```


Bode Diagram

The variance of the regularized model m 2 is reduced compared to the unregularized model m1.

Estimate Model Using Band-Limited Discrete-Time Frequency-Domain Data

Obtain the estimation data.

```
filename = fullfile(matlabroot,'examples','ident','oe_data2.mat');
load(filename,'data','Ts');
```

data, an iddata object, contains the discrete-time frequency response for the following model:

$$
G(s)=\frac{1000}{s+500}
$$

The sampling time for data, Ts, is 0.001 seconds.
Treat data as continuous-time data. When you plot data, the input/output signals are band-limited, which allows you to treat data as continuous-time data. You can now obtain a continuous-time model.

```
data.Ts = 0;
```

Specify the estimation options.

```
opt = oeOptions('Focus',[0 0.5*pi/Ts]);
```

Limiting the 'Focus ' option to the [0 0.5*pi/Ts] range directs the software to ignore the response values for frequencies higher than $0.5 * \mathrm{pi} / \mathrm{Ts} \mathrm{rad} / \mathrm{s}$.

Estimate the model.

```
nb = 1;
nf = 3;
sys = oe(data,[nb nf],opt);
```


Alternatives

Output-Error models are a special configuration of polynomial models, having only two active polynomials - B and F. For such models, it may be more convenient to use a transfer function (idtf) model and its estimation command, tfest.

Also, tfest is the recommended command for estimating continuous-time models.

More About

Output-Error (OE) Model

The general Output-Error model structure is:

$$
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+e(t)
$$

The orders of the Output-Error model are:

$$
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
$$

Continuous-Time, Output-Error Model

If data is continuous-time frequency-domain data, oe estimates a continuous-time model with transfer function:

$$
G(s)=\frac{B(s)}{F(s)}=\frac{b_{n b} s^{(n b-1)}+b_{n b-1} s^{(n b-2)}+\ldots+b_{1}}{s^{n f}+f_{n f} s^{(n f-1)}+\ldots+f_{1}}
$$

The orders of the numerator and denominator are nb and nf , similar to the discretetime case. However, the delay nk has no meaning and you should omit it when specifying model orders for estimation. Use model = oe(data, [nb nf]). Use the ioDelay model property to specify any input-output delays. For example, use model $=$ oe (data, [nb nf], 'ioDelay', iod) instead.

Tips

- To estimate a continuous-time model when data represents continuous-time frequency response data, omit nk.

For example, use sys = oe(data, [nb nf]).

Algorithms

The estimation algorithm minimizes prediction errors.

- "Regularized Estimates of Model Parameters"

See Also

armax | arx | bj | compare | iddata | idfrd | idpoly | iv4 | n4sid | oeOptions | polyest | sim | tfest

oeOptions

Option set for oe

Syntax

opt = oeOptions
opt = oeOptions(Name, Value)

Description

opt = oeOptions creates the default options set for oe.
opt $=$ oeOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition'

Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial conditions are set to zero.
- 'estimate ' - The initial conditions are treated as independent estimation parameters.
- 'backcast ' - The initial conditions are estimated using the best least squares fit.
- 'auto ' - The software chooses the method to handle initial conditions based on the estimation data.

Default: 'auto'
'Focus'
Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation' - Estimates a stable model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- 'prediction ' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction. This approach typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. This option does not enforce model stability.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range.

You receive an estimation result that is the same as if you had first prefiltered using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same length as the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

'EstCovar' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

' Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

' InputOffset ' - Remove offset from time-domain input data during estimation [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' OutputOffset ' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'Regularization'

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0

- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

'SearchMethod'

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:

- 'gn' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J))*norm(J) are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- 'gna' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where $s v$ are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). This value is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. This value is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method so that the next parameter value is pinv $(H+d * I) * g r a d$ from the previous one. H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can handle only the Trace criterion.
- 'grad ' - The steepest descent gradient search method.
- 'auto ' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

'SearchOption'

Options set for the search algorithm.

SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'Im', 'grad', or 'auto'

Field Name	Description
Toleran	Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value. Default: 0.01
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance. Setting MaxIter $=0$ returns the result of the start-up procedure. Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model. Default: 20
Advance	Advanced search settings. Specified as a structure with the following fields:
	Field Name Description
	GnPinvCon: Singular values of the Jacobian matrix that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'.

	Description	
	Field Name	Description
		GnPinvConst must be a positive, real value. Default: 10000
	InitGnaTo.	Initial value of gamma. Applicable when SearchMethod is 'gna'. Default: 0.0001
	LMStartVa	Starting value of search-direction length d in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. Default: 0.001
	LMStep	Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. Default: 2
	MaxBisect	Maximum number of bisections used by the line search along the search direction. Default: 25
	MaxFunEva.	Iterations stop if the number of calls to the model file exceeds this value. MaxFunEvals must be a positive, integer value. Default: Inf
	MinParCha	Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. Default: 0
	RelImprov	Iterations stop if the relative improvement of the criterion function is less than RelImprovement.

Field Name	Description	
	Field Name	Description
		RelImprovement must be a positive, integer value. Default: 0
	StepReduc	Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until either MaxBisections tries are completed or a lower value of the criterion function is obtained. StepReduction must be a positive, real value that is greater
Default: 2		

SearchOption structure when SearchMethod is specified as 'Isqnonlin'

Field Name	Description
TolFun	Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values. The value of TolFun is the same as that of sys.SearchOption. Advanced. TolFun. Default: 1e-5
TolX	Termination tolerance on the estimated parameter values. The value of TolX is the same as that of sys.SearchOption. Advanced. TolX. Default: 1e-6
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.

```
Field Description
Name
    The value of MaxIter is the same as that of
    sys.SearchOption.Advanced.MaxIter.
    Default: }2
Advance Options set for lsqnonlin.
    For more information, see the Optimization Options table in "Optimization
    Options".
    Use optimset('lsqnonlin') to create an options set for lsqnonlin, and
    then modify it to specify its various options.
```


'Advanced'

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

$$
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
$$

- $y_{\text {meas }}$ is the measured output.
- $y_{p, z}$ is the predicted output of a model estimated using zero initial conditions.
- $y_{p, e}$ is the predicted output of a model estimated using estimated initial conditions.

Applicable when InitialCondition is 'auto '.
Default: 1.05

Output Arguments

opt

Option set containing the specified options for oe.

Examples

Create Default Options Set for Output-Error Estimation

```
opt = oeOptions;
```


Specify Options for Output-Error Estimation

Create an options set for oe using the 'backcast ' algorithm to initialize the condition and set the Display to 'on'.

```
opt = oeOptions('InitialCondition','backcast','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = oeOptions;
opt.InitialCondition = 'backcast';
opt.Display = 'on';
```


References

[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for
Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.

See Also

idfilt|oe

operspec(idnlarx)

Construct operating point specification object for idnlarx model

Syntax

SPEC = operspec(NLSYS)

Description

SPEC = operspec(NLSYS) creates an operating point specification object for the idnlarx model NLSYS. The object encapsulates constraints on input and output signal values. These specifications are used to determine an operating point of the idnlarx model using findop(idnlarx).

Input Arguments

- NLSYS: idnlarx model.

Output Arguments

- SPEC: Operating point specification object. SPEC contains the following properties:
- Input: Structure with fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: - Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.
- Output: Structure with fields:
- Value: Initial guess for the values of the output signals. Default value: Vector of zeros.
- Min: Minimum value constraint on values of output signals for the model. Default value: - Inf.
- Max: Maximum value constraint on values of output signals for the model. Default value: - Inf.

See Also
findop(idnlarx)

operspec(idnlhw)

Construct operating point specification object for idnlhw model

Syntax

SPEC $=$ operspec (NLSYS)

Description

SPEC = operspec (NLSYS) creates an operating point specification object for the idnlhw model NLSYS. The object encapsulates constraints on input and output signal values. These specifications are used to determine an operating point of the idnlhw model using findop(idnlhw).

Input Arguments

- NLSYS: idnlhw model.

Output Arguments

- SPEC: Operating point specification object. SPEC contains the following fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.

Note:

1 If the input is completely known ('Known ' field is set to true for all input channels), then the initial state values are determined using input values only. In this case, findop(idnlhw) ignores the output signal specifications.

2 If the input values are not completely known, findop(idnlhw) uses the output signal specifications to achieve the following objectives:

- Match target values of known output signals (output channels with Known = true).
- Keep the free output signals (output channels with Known = false) within the specified min/max bounds.

See Also

findop(idnlhw)

order

Query model order

Syntax

```
NS = order(sys)
```


Description

NS = order(sys) returns the model order NS. The order of a dynamic system model is the number of poles (for proper transfer functions) or the number of states (for statespace models). For improper transfer functions, the order is defined as the minimum number of states needed to build an equivalent state-space model (ignoring pole/zero cancellations).
order (sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI arrays, NS is an array of the same size listing the orders of each model in sys.

Caveat

order does not attempt to find minimal realizations of MIMO systems. For example, consider this 2-by-2 MIMO system:

```
s=tf('s');
h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];
order(h)
ans =
```

6
Although h has a 3rd order realization, order returns 6. Use

```
order(ss(h,'min'))
```

to find the minimal realization order.

See Also
pole | balred

pe

Prediction error for an identified model

Syntax

```
err = pe(sys,data,K)
err = pe(sys,data,K,opt)
[err,x0e,sys_pred] = pe(___)
pe(___)
```


Description

err $=$ pe(sys, data, K) returns the K-step prediction error for the output of the identified model, sys. The prediction error is determined by subtracting the K-step ahead predicted response from the measured output. The prediction error is calculated for the time span covered by data. For more information on the computation of predicted response, see predict.
err = pe(sys,data, K,opt) returns the prediction error using the option set, opt, to specify prediction error calculation behavior.
[err,x0e,sys_pred] = pe(__) also returns the estimated initial state, x0e, and a predictor system, sys_pred.
pe(\qquad) plots the prediction error.

Input Arguments

sys
Identified model.
data
Measured input-output history.

If sys is a time-series model, which has no input signals, then specify data as an iddata object with no inputs. In this case, you can also specify data as a matrix of the past timeseries values.

K

Prediction horizon.
Specify K as a positive integer that is a multiple of the data sample time. Use K = Inf to compute the pure simulation error.

Default: 1

opt

Prediction options.
opt is an option set, created using peOptions, that configures the computation of the predicted response. Options that you can specify include:

- Handling of initial conditions
- Data offsets

Output Arguments

err

Prediction error.
err is an iddata object.
Outputs up to the time $\mathrm{t}-\mathrm{K}$ and inputs up to the time instant t are used to calculate the prediction error at the time instant t .

When K = Inf, the predicted output is a pure simulation of the system.
For multi-experiment data, err contains the prediction error data for each experiment. The time span of the prediction error matches that of the observed data.

$x 0 e$

Estimated initial states.
$x 0 \mathrm{e}$ is returned only for state-space systems.

sys_pred

Predictor system.
sys_pred is a dynamic system. When you simulate sys_pred, using [data.OutputData data. InputData] as the input, the output, $y p$, is such that err.OutputData = data.OutputData - yp. For state-space models, the software uses x0e as the initial condition when simulating sys_pred.

For discrete-time data, sys_pred is always a discrete-time model.
For multi-experiment data, sys_pred is an array of models, with one entry for each experiment.

Examples

Compute Prediction Error for an ARIX Model

Compute the prediction error for an ARIX model.
Use the error data to compute the variance of the noise source $e(t)$.
Obtain noisy data.

```
noise = [(1:150)';(151:-1:2)'];
load iddata1 z1;
z1.y = z1.y+noise;
```

noise is a triangular wave that is added to the output signal of $\mathbf{z 1}$, an iddata object.
Estimate an ARIX model for the noisy data.

```
sys = arx(z1,[2 2 1],'IntegrateNoise',true);
```

Compute the prediction error of the estimated model.

```
K = 1;
err = pe(z1,sys,K);
```

pe computes the one-step prediction error for the output of the identified model, sys.

Compute the variance of the noise source, $e(t)$.
noise_var = err.y'*err.y/(299-nparams(sys)-order(sys));
Compare the computed value with model's noise variance.
sys.NoiseVariance
The output of sys.NoiseVariance matches the computed variance.

See Also

ar | arx | compare | iddata | idpar | lsim | n4sid | peOptions | predict | resid | sim

peOptions

Option set for pe

Syntax

```
opt = peOptions
```

opt = peOptions(Name, Value)

Description

opt $=$ peOptions creates the default options set for pe.
opt $=$ peOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'InitialCondition'

Specify the handling of initial conditions.
InitialCondition takes one of the following:

- 'z' — Zero initial conditions.
- 'e' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space and nonlinear models only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the input/output history for a time interval that starts before the start time of the data used by pe. If the data used by pe is a time-series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of $N e$ elements, where $N e$ is the number of experiments.

- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: 'e'

'Input0ffset'

Removes offset from time domain input data during prediction-error calculation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
For multi-experiment data, specify InputOffset as an $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.
Specify input offset for only time domain data.
Default: []

'OutputOffset'

Removes offset from time domain output data during prediction-error calculation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

In case of multi-experiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.
Specify output offset for only time domain data.
Default: []

'OutputWeight'

Weight of output for initial condition estimation.
OutputWeight takes one of the following:

- [] — No weighting is used. This value is the same as using eye (Ny) for the output weight, where $N y$ is the number of outputs.
- 'noise ' - Inverse of the noise variance stored with the model.
- matrix - A positive, semidefinite matrix of dimension $N y$-by- $N y$, where $N y$ is the number of outputs.

Default: []

Output Arguments

opt

Option set containing the specified options for pe.

Examples

Create Default Options Set for Prediction-Error Calculation

```
opt = peOptions;
```


Specify Options for Prediction-Error Calculation

Create an options set for pe using zero initial conditions, and set the input offset to 5 .

```
opt = peOptions('InitialCondition','z','InputOffset',5);
```

Alternatively, use dot notation to set the values of opt.

```
opt = peOptions;
```

opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also

idpar | pe

pem

Prediction error estimate for linear or nonlinear model

Syntax

sys = pem(data,init_sys)
sys = pem(data,init_sys,opt)

Description

sys = pem(data,init_sys) updates the parameters of init_sys, a linear or nonlinear model, to fit the given estimation data, data. The prediction-error minimization algorithm is used to update the free parameters of init_sys.
sys = pem(data, init_sys,opt) configures the estimation options using the option set opt. This syntax is valid for linear models only.

Input Arguments

data
Estimation data.
Specify data as an iddata or idfrd object containing the measured input/output data.
The input-output dimensions of data and init_sys must match.
You can specify frequency-domain data only when init_sys is a linear model.

init_sys

Linear or nonlinear identified model that configures the initial parameterization of sys.
init_sys may be a linear or nonlinear model and must have finite parameter values. You may obtain init_sys by performing an estimation using measured data, or by direct construction. idnlarx and idnlhw models can be obtained only by estimation.

You can configure initial guesses, specify minimum/maximum bounds, and fix or free for estimation any parameter of init_sys.

- For linear models, use the Structure property. For more information, see "Imposing Constraints on Model Parameter Values".
- For nonlinear models grey-box models, use the InitialStates and Parameters properties. Parameter constraints cannot be specified for nonlinear ARX and Hammerstein-Wiener models.

opt

Estimation options.
opt is an option set that specifies:

- Estimation algorithm settings
- Handling of the estimating focus
- Initial conditions
- Data offsets

You can specify an option set only when init_sys is a linear model.
You must create an option set using one of the following functions. The function used to create the option set depends on the initial model type.

Model Type	Option Set Function
idss	ssestOptions
idtf	tfestOptions
idproc	procestOptions
idpoly	polyestOptions
idgrey	greyestOptions

Output Arguments

sys

Identified model.
sys is obtained by estimating the free parameters of init_sys using the prediction error minimization algorithm.

Examples

Refine Estimated State-Space Model

Estimate a discrete-time state-space model using the subspace method. Then, refine it by minimizing the prediction error.

Estimate a discrete-time state-space model using n4sid, which applies the subspace method.

```
load iddata7 z7;
z7a = z7(1:300);
opt = n4sidOptions('Focus','simulation');
init_sys = n4sid(z7a,4,opt);
```

init_sys, the estimated state-space model, provides a 73.85% fit to the estimation data (see init_sys.Report.Fit.FitPercent). Use pem to improve the closeness of the fit.

Obtain a refined estimated model by using pem.

```
sys = pem(z7a,init_sys);
```

Analyze the results.

```
compare(z7a,sys,init_sys);
```


sys refines the estimated model and provides a 74.54% fit to the estimation data (see init_sys.Report.Fit.FitPercent).

Configure Estimation Using Process Model

Create a process model structure and update its parameter values to minimize prediction error.

Create a process model and initialize its coefficients.

```
init_sys = idproc('P2UDZ');
init_sys.Kp = 10;
init_sys.Tw = 0.4;
init_sys.Zeta = 0.5;
```

```
init_sys.Td = 0.1;
init_sys.Tz = 0.01;
```

Use init_sys, a process model created by direct construction, to configure the estimation by pem. The $K p, T w, Z e t a, T d$, and $T z$ coefficients of init_sys are configured with their initial guesses.

Estimate a prediction error minimizing model using measured data.

```
load iddata1 z1;
opt = procestOptions('Display','on','SearchMethod','lm');
sys = pem(z1,init_sys,opt);
```

Because init_sys is an idproc model, use the corresponding option set command, procestOptions, to create an estimation configuring option set.
sys is an estimated process model, which provides a 70.63% fit to the measured data (see sys.Report.Fit.FitPercent).

Estimate Nonlinear Grey-Box Model

Estimate the parameters of a nonlinear grey-box model to fit DC motor data.
Load the experimental data, and specify the signal attributes such as start time, and units.

```
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));
data = iddata(y, u, 0.1);
data.Tstart = 0;
data.TimeUnit = 's';
```

Configure the nonlinear grey-box model (idnlgrey) model.
For this example, use the shipped file dcmotor_m.m. To view this file, enter edit dcmotor_m.m at the MATLAB® command prompt.

```
file_name = 'dcmotor_m';
order = [2 1 2];
parameters = [1; 0.28];
initial_states = [0; 0];
Ts = 0;
init_sys = idnlgrey(file_name,order,parameters,initial_states,Ts);
```

```
init_sys.TimeUnit = 's';
setinit(init_sys,'Fixed',{false false});
```

init_sys is a nonlinear grey-box model with its structure described by dcmotor_m.m. The model has one input, two outputs and two states, as specified by order.
setinit(init_sys,'Fixed', \{false false\}) specifies that the initial states of init_sys are free estimation parameters.

Estimate the model parameters and initial states.
sys = pem(data,init_sys);
sys is an idnlgrey model, which encapsulates the estimated parameters and their covariance.

Analyze the estimation result.
compare(data,sys,init_sys);

Output:y1 System Fit\% sys 98.34 init_sys 79.39

sys provides a 98.34% fit to the estimated data.

Alternatives

You can use estimation commands that are model-type specific for all model types, except for idnlgrey models. These commands achieve the same results as pem when an initial model of matching type is provided as input argument. The following table summarizes the dedicated estimation commands for each model type.

Function	Model Type
ssest	idss

Function	Model Type
tfest	idtf
polyest	idpoly
procest	idproc
greyest	idgrey
nlarx	idnlarx
nlhw	idnlhw

More About

Algorithms

PEM uses numerical optimization to minimize the cost function, a weighted norm of the prediction error, defined as follows for scalar outputs:

$$
V_{N}(G, H)=\sum_{t=1}^{N} e^{2}(t)
$$

where $e(t)$ is the difference between the measured output and the predicted output of the model. For a linear model, this error is defined by the following equation:

$$
e(t)=H^{-1}(q)[y(t)-G(q) u(t)]
$$

$e(t)$ is a vector and the cost function $V_{N}(G, H)$ is a scalar value. The subscript N indicates that the cost function is a function of the number of data samples and becomes more accurate for larger values of N. For multiple-output models, the previous equation is more complex.

See Also

armax | bj | compare | greyest | greyestOptions | iddata | idfilt | idfrd | idgrey | idpoly | idproc | idss | idtf | n4sid | nlarx | nlhw | oe | polyestOptions | procest | procestOptions | resid | ssest | ssestOptions | tfest| tfestOptions

pexcit

Level of excitation of input signals

Syntax

```
Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)
```


Description

Ped $=$ pexcit (Data) tests the degree of persistence of excitation for the input. Data is an iddata object with time- or frequency-domain signals. Ped is the degree or order of excitation of the inputs in Data and is a row vector of integers with as many components as there are inputs in Data. The intuitive interpretation of the degree of excitation in an input is the order of a model that the input is capable of estimating in an unambiguous way.
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold) specifies the maximum order tested and threshold level used to measure which singular values are significant. Default value of Maxnr is min $(N / 3,50)$, where N is the number of input data. Default value of Threshold is 1e-9.

References

Section 13.2 in Ljung (1999).

See Also
advice | iddata | feedback | idnlarx

iddata/plot

Plot input-output data

Syntax

```
plot(data)
plot(data,LineSpec)
plot(data1,...,dataN)
plot(data1,LineSpec1..., dataN,LineSpecN)
plot(axes_handle,___)
plot(___,plotoptions)
h = plot(___)
```


Description

plot (data) plots the input and output channels of an iddata object. The outputs are plotted on the top axes and the inputs on the bottom axes.

- For time-domain data, the input and output signals are plotted as a function of time. Depending on the InterSample property of the iddata object, the input signals are plotted as linearly interpolated curves or as staircase plots. For example, if data.InterSample = 'zoh', the input is piecewise constant between sampling points, and it is then plotted accordingly.
- For frequency-domain data, the magnitude and phase of each input and output signal is plotted over the available frequency span.

To plot a subselection of the data, use subreferencing:

- plot (data(201:300)) plots the samples 201 to 300 in the dataset data.
- plot(data(201:300, 'Altitude', \{'Angle_of_attack', 'Speed'\})) plots the chosen samples of output named Altitude and inputs named Angle_of_attack and Speed.
- plot(data(:, [34],[3:7]) plots all samples of output channel numbers 3 and 4 and input numbers 3 through 7 .
plot (data, LineSpec) specifies the color, line style and marker symbol for the dataset.
plot (data1, ..., dataN) plots multiple datasets. The number of plot axes are determined by the number of unique input and output names among all the datasets.
plot (data1, LineSpec1..., dataN, LineSpecN) specifies the line style, marker type, and color for each dataset. You can mix data, LineSpec pairs with data. For example, plot(data1, data2, LineSpec2, data3).
plot (axes_handle, ___) plots into the axes with handle axes_handle instead of into the current axes (gca). This syntax can include any of the input argument combinations in the previous syntaxes.
plot \qquad , plotoptions) specifies the plot options. This syntax can include any of the input argument combinations in the previous syntaxes.
$\mathrm{h}=\mathrm{plot}(\ldots \quad)$ returns the handle to the plot. You can use this handle to customize the plot with getoptions and setoptions.

Input Arguments

data - Input-output data

iddata object
Input-output data, specified as an iddata object. The data can be time-domain or frequency-domain. It can be a single- or multi-channel data, or single- or multiexperiment data.

LineSpec - Line style, marker symbol, and color string

Line style, marker symbol, and color, specified as a string. LineSpec takes values such as 'b', 'b+:'. For more information, see the plot reference page in the MATLAB documentation.

Data Types: char

axes handle - Axes handle
 handle

Axes handle, which is the reference to an axes object. Use the gca function to get the handle to the current axes, for example, axes_handle= gca.

plotoptions - Plot options

structure

Plot options, specified as an options set created using iddataPlotOptions.

Output Arguments

h - Lineseries handle

scalar | vector
Lineseries handle, returned as a scalar or vector. These are unique identifiers, which you can use to query and modify properties of a specific plot.

Examples

Plot Time-Domain Input-Output Data
Load the data.
load iddata1 z1;
Plot the data.

```
plot(z1)
```


Input-Output Data

The output is plotted on the top axes and the input on the bottom axes.
You can right-click the plot to explore its characteristics such as peak and mean values.

Plot Frequency-Domain Input-Output Data

Load the data.
load iddata1 z1
Convert the data to frequency domain.

```
zf = fft(z1);
```

Plot the data.

```
plot(zf);
```


Input-Output Data

Plot Input Data, Output Data and Input-Output Data

Generate input data.

```
u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
```

Generate output data.
sys = idtf(1,[1 2 1]);
y $=\operatorname{sim}($ sys,u);

Plot only the input.
plot(u)

Input-Output Data

Plot only the output.
plot(y)

Plot the input and output together.
plot(y,u)

Input-Output Data

Alternatively, you can use plot(iddata(y,u)).

Plot Multi-Experiment Data

Create a multi-experiment data set.

```
load iddata1 z1
load iddata2 z2
zm = merge(z1,z2);
```

Plot the data.

```
plot(zm);
```


Input-Output Data

For multi-experiment data, each experiment is treated as a separate data set. You can right-click the plots to view their characteristics.

Specify Line Style, Marker Symbol and Color

Load multiple datasets.

```
load iddata1 z1;
load iddata2 z2;
```

Specify the linestyle properties.

```
plot(z1,'y:*',z2,'b')
```

Input-Output Data

Specify Axes Handle

Create a figure with two subplots and return the handle to each subplot axes, $s(1)$ and $\mathrm{s}(2)$.
figure; \% new figure
s(1) $=$ subplot $(2,1,1)$; \% top subplot
s(2) $=$ subplot(2,1,2); \% bottom subplot

Load the data sets.
load iddata1;
load iddata2;
Create a data plot in each axes referring to the axes handles.
plot(s(1), z1)
plot(s(2),z2)

Input-Output Data

Specify Plot Options

Configure a time plot.
opt = iddataPlotOptions('time');
View the plot in minutes time units.
opt.TimeUnits = 'minutes';
Turn grid on.
opt.Grid = 'on';
Create plot with the options specified by opt.

```
load iddata1 z1
plot(z1, opt);
```


Change Plot Properties Using Handles

Create a data plot and return the handle.
load iddata1;
h = plot(z1);

Input-Output Data

Set the time unit on the plot.
setoptions(h,'TimeUnits','minutes');

Input-Output Data

More About

Tips

- Right-clicking the plot opens the context menu where you can access the following options and plot controls:
- Datasets - View the datasets used in the plot.
- Characteristics - View data characteristics.
- Peak Value - Peak value of the data. Useful for transient data.
- Mean Value - Mean value of the data. Useful for steady-state data.
- I/O Grouping - (For datasets containing more than one input or output channels) Group input and output channels on the plot.
- I/O Selector - (For datasets containing more than one input or output channels) Select a subset of the input and output channels to plot. By default, all input and output channels are plotted.
- Grid - Add grids to your plot.
- Normalize - Normalize the y-scale of all data in the plot.
- Properties - Open the Property Editor dialog box, where you can customize plot attributes.

See Also
iddata | iddataPlotOptions | identpref

idnlarx/plot

Plot nonlinearity of nonlinear ARX model

Syntax

```
plot(model)
plot(model,color)
plot(model1,...,modelN)
plot(model1,color1...,modelN,colorN)
plot(
```

\qquad

``` , 'NumberofSamples',N)
```


Description

plot (model) plots the nonlinearity of a nonlinear ARX model on a nonlinear ARX plot. The plot shows the nonlinearity for all outputs of the model as a function of its input regressors.
plot (model, color) specifies the color to use.
plot (model1, ..., modelN) generates the plot for multiple models.
plot (model1, color1..., modelN, colorN) specifies the color for each model. You do not need to specify the color for all models.
plot \qquad , 'NumberofSamples', N) specifies the number of samples to use to grid the regressor space on each axis. This syntax can include any of the input argument combinations in the previous syntaxes.

Examples

Plot Nonlinearity of a Nonlinear ARX Model

Estimate a nonlinear ARX model and plot its nonlinearity.

```
load iddata1
```

```
model1=nlarx(z1,[4 2 1],'wave','nlr',[1:3]);
plot(model1)
```


In the plot window, you can choose:

- The regressors to use on the plot axes, and specify the center points for the other regressors in the configuration panel. For multi-output models, each output is plotted separately.
- The output to view from the drop-down list located at the top of the plot.

Specify Line Style for Multiple Models

```
load iddata1
model1 = nlarx(z1,[4 2 1],'wave','nlr',[1:3]);
model2 = nlarx(z1,[4 2 1],'sigmoidnet','nlr',[1:3]);
plot(model1,'b', model2, 'g')
```


Specify Number of Samples

load iddata1
model1 = nlarx(z1,[4 2 1],'wave','nlr',[1:3]);
model2 = nlarx(z1,[4 2 1],'sigmoidnet','nlr',[1:3]);
plot(model1,'b', model2, 'g','NumberofSamples',50)

Input Arguments

model - Estimated nonlinear ARX model

idnlarx model
Estimated nonlinear ARX model, specified as an idnlarx model object. Use nlarx to estimate the model.

color - Color to use
 string | vector of doubles

Color to use to plot the regressors, specified as one of the following:

- String. The string can be one of the following:
- 'b'
- 'y'
- 'm'
- 'c'
- 'r'
- 'g'
- 'w'
- 3-element double vector of RGB values

By default, the colors are automatically chosen.
Data Types: double | char

N - Number of points

20 (default) | positive integer
Number of points used on the regressor axis to display the regressor samples, specified as a positive integer.

Data Types: double

More About

What is a Nonlinear ARX Plot?

The Nonlinear ARX plot displays the characteristics of model nonlinearities as a function of one or two regressors. The model nonlinearity (model. Nonlinearity) is a nonlinearity estimator function, such as wavenet, sigmoidnet, treepartition, and uses model regressors as its inputs. The value of the nonlinearity is plotted by projecting its response in 2 or 3 -dimensional space. The plot uses one or two regressors as the plot axes for 2 - or 3-D plots, respectively and a center point (cross-section location) for the other regressors.

Examining a nonlinear ARX plot can help you gain insight into which regressors have the strongest effect on the model output. Understanding the relative importance of the regressors on the output can help you decide which regressors should be included in the nonlinear function.

Furthermore, you can create several nonlinear models for the same data set using different nonlinearity estimators, such a wavenet network and treepartition, and then compare the nonlinear surfaces of these models. Agreement between nonlinear surfaces increases the confidence that these nonlinear models capture the true dynamics of the system.

In the plot window, you can choose:

- The regressors to use on the plot axes, and specify the center points for the other regressors in the configuration panel. For multi-output models, each output is plotted separately.
- The output to view from the drop-down list located at the top of the plot.

To learn more about configuring the plot, see "Tips" on page 1-768.

Tips

- To configure the nonlinear ARX plot:

1 If your model contains multiple outputs, select the output channel in the Select nonlinearity at output drop-down list. Selecting the output channel displays the nonlinearity values that correspond to this output channel.
2
If the regressor selection options are not visible, click $\stackrel{\square}{\square}$ to expand the Nonlinear ARX Model Plot window.
3 Select Regressor 1 from the list of available regressors. In the Range field, enter the range of values to include on the plot for this regressor. The regressor values are plotted on the Reg1 axis.
4 Specify a second regressor for a 3-D plot by selecting one of the following types of options:

- Select Regressor 2 to display three axes. In the Range field, enter the range of values to include on the plot for this regressor. The regressor values are plotted on the Reg2 axis.
- Select <none> in the Regressor 2 list to display only two axes.

5 To fix the values of the regressor that are not displayed, click Fix Values. In the Fix Regressor Values dialog box, double-click the Value cell to edit the constant value of the corresponding regressor. The default values are determined during model estimation. Click OK.
6 Click Apply to update the plot.

- "Structure of Nonlinear ARX Models"
- "Validating Nonlinear ARX Models"

See Also
evaluate | getreg | idnlarx | nlarx

idnlhw/plot

Plot input and output nonlinearity, and linear responses of Hammerstein-Wiener model

Syntax

```
plot(model)
plot(model,LineSpec)
plot(model1, ...,modelN)
plot(model1,LineSpec1...,modelN,LineSpecN)
plot(___,Name,Value)
```


Description

plot (model) plots the input and output nonlinearity, and linear responses of a Hammerstein-Wiener model on a Hammerstein-Wiener plot. The plot shows the responses of the input and output nonlinearity, and linear blocks that represent the model.
plot (model, LineSpec) specifies the line style.
plot (model1, ..., modelN) generates the plot for multiple models.
plot (model1,LineSpec1..., modelN, LineSpecN) specifies the line style for each model. You do not need to specify the line style for all models.
plot \qquad , Name, Value) specifies plot properties using additional options specified by one or more Name, Value pair arguments. This syntax can include any of the input argument combinations in the previous syntaxes.

Examples

Plot Input and Output Nonlinearity and Linear Response of a Hammerstein-Wiener Model
Estimate a Hammerstein-Wiener Model and plot responses of its input and output nonlinearity and linear blocks.

```
load iddata3
```

```
model1 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone');
plot(model1)
```

File Edit View Insert Tools Desktop Window Help

Explore the various plots in the plot window by clicking one of the three blocks that represent the model:

- uNL - Input nonlinearity, representing the static nonlinearity at the input (model. InputNonlinearity) to the LinearBlock.
- Linear Block - Step, impulse,Bode and pole-zero plots of the embedded linear model (model. LinearModel). By default, a step plot is displayed.
- yNL - Output nonlinearity, representing the static nonlinearity at the output (model. OutputNonlinearity) of the Linear Block.

Specify Line Style for Multiple Models

```
load iddata3
model1 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone');
model2 = nlhw(z3, [4 2 1],[],'sigmoidnet');
plot(model1,'b-', model2, 'g')
```


Specify Number of Samples, Time Samples and Range of Input Nonlinearity

```
load iddata3
model1 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone');
model2 = nlhw(z3, [4 2 1],[],'sigmoidnet');
plot(model1,'b-', model2, 'g', 'NumberOfSamples',50,'time',10,'InputRange',[-2 2]);
```


Specify Time Samples, Frequency and Range of Output Nonlinearity

```
load iddata3
model1 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone');
model2 = nlhw(z3, [4 2 1],[],'sigmoidnet');
plot(model1,model2,'time',1:500,'freq',{0.01,100},'OutputRange',[0 1000]);
```


Input Arguments

model - Estimated Hammerstein-Wiener model idnlhw model

Estimated Hammerstein-Wiener model, specified as an idnlhw model object. Use nlhw to estimate the model.

LineSpec - Line style, marker symbol, and color string

Line style, marker symbol, and color, specified as a string. LineSpec takes values such as 'b', 'b+:'. For more information, see the plot reference page in the MATLAB documentation.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: plot (model, 'NumberofSamples', 10) specifies to use 10 data points for the input regressors.

' NumberOfSamples ' - Number of data points to use for input regressors 100 (default) | positive integer

Number of data points to use for the input regressors when evaluating the nonlinearities at individual input or output channels, specified as a positive integer. This property does not affect the plots of the linear block.
Data Types: double

'InputRange' - Minimum and maximum regressor values for evaluating input nonlinearities

range of regressor values used during each model's estimation. (default) | positive integer | vector

Minimum and maximum regressor values to use when evaluating the nonlinearities at each input channel, specified as positive integers or [min max] vector, where minimum value is less than the maximum value.

You can use 'uRange' as a shortcut name for this property.
Data Types: double

'OutputRange ' - Minimum and maximum regressor values for evaluating output nonlinearities

range of regressor values used during each model's estimation (default) | positive integer | vector

Minimum and maximum regressor values to use when evaluating the nonlinearities at each output channel, specified as positive integers or [min max] vector, where minimum value is less than the maximum value.

You can use 'yRange ' as a shortcut name for this property.
Data Types: double
'Time ' - Time samples to compute transient responses of the linear block each model's dynamics determine the time samples used (default) | positive scalar | vector

The time samples at which the transient responses (step and impulse) of the linear block of the idnlhw model must be computed, specified as one of the following values:

- Positive scalar - Denotes end time for transient responses of all models. For example, 10.
- Vector of time instants - A double vector of equi-sampled values denotes the time samples at which the transient response must be computed. For example, [0:0.1:10].

This property takes the same values as the step command on the model.

'Frequency ' - Frequencies at which to compute the Bode response

automatically chosen inside the Nyquist frequency range (default) | [min max] range of positive scalars | vector of positive integers

Frequencies at which to compute the Bode response, specified as one of the following values:

- [Wmin Wmax] range - Frequency interval between Wmin and Wmax (in units rad/ (model.TimeUnit)) covered using logarithmically placed points.
- Vector of non-negative frequency values - Allows computation of bode response at those frequencies.

By default, the response is computed at some automatically chosen frequencies inside the Nyquist frequency range. Frequencies above Nyquist frequency (pi/model.Ts) are ignored.

This property takes the same values as the bode command on the model.

More About

What is a Hammerstein-Wiener Plot?

A Hammerstein-Wiener plot displays the characteristics of the linear block and the static nonlinearities of a Hammerstein-Wiener model.

Examining a Hammerstein-Wiener plot can help you determine whether you chose an unnecessarily complicated nonlinearity for modeling your system. For example, if you chose a piecewise-linear nonlinearity (which is very general), but the plot indicates saturation behavior, then you can estimate a new model using the simpler saturation nonlinearity instead.

For multivariable systems, you can use the Hammerstein-Wiener plot to determine whether to exclude nonlinearities for specific channels. If the nonlinearity for a specific input or output channel does not exhibit strong nonlinear behavior, you can estimate a new model after setting the nonlinearity at that channel to unit gain.

Explore the various plots in the plot window by clicking one of the three blocks that represent the model:

- u_{NL} - Input nonlinearity, representing the static nonlinearity at the input (model.InputNonlinearity) to the Linear Block.
- Linear Block - Step, impulse, Bode and pole-zero plots of the embedded linear model (model.LinearModel). By default, a step plot is displayed.
- y_{NL} - Output nonlinearity, representing the static nonlinearity at the output (model.OutputNonlinearity) of the Linear Block.

To learn more about how to configure the linear and nonlinear blocks plots, see "Tips" on page 1-775.

Tips

- The Hammerstein-Wiener model can contain up to two nonlinear blocks. The nonlinearity at the input to the Linear Block is labeled u_{NL} and is called the input nonlinearity. The nonlinearity at the output of the Linear Block is labeled y_{NL} and is called the output nonlinearity.

To configure the nonlinear block characteristics plot:

If the top pane is not visible, click $\stackrel{\leftrightarrows}{ }$ to expand the Hammerstein-Wiener Model Plot window.
2 Select the nonlinear block you want to plot:

- To plot u_{NL} as a command of the input data, click the u_{NL} block.
- To plot y_{NL} as a command of its inputs, click the y_{NL} block.

The selected block is highlighted in green.

Note: The input to the output nonlinearity block y_{NL} is the output from the Linear Block and not the measured input data.
3 If your model contains multiple inputs or outputs, select the channel in the Select nonlinearity at channel list. Selecting the channel updates the plot and displays the nonlinearity values versus the corresponding input to this nonlinear block.
4 Click Apply to update the plot.

- The Hammerstein-Wiener model contains one Linear Block that represents the embedded linear model.

To configure the linear block plot:

1

If the top pane is not visible, click ${ }^{〔<}$ to expand the Hammerstein-Wiener Model Plot window.
2 Click the Linear Block to select it. The Linear Block is highlighted in green.
3 In the Select I/O pair list, select the input and output data pair for which to view the response.
4 In the Choose plot type list, select the linear plot from the following options:

- Step
- Impulse
- Bode
- Pole-Zero Map
- "Structure of Hammerstein-Wiener Models"
- "Validating Hammerstein-Wiener Models"

See Also

idnlhw | nlhw

pole

Compute poles of dynamic system

Syntax

```
pole(sys)
```


Description

pole(sys) computes the poles p of the SISO or MIMO dynamic system model sys.
If sys has internal delays, poles are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation) so that the system has a finite number of zeros. For some systems, setting delays to 0 creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, pole returns an error. This error does not imply a problem with the model sys itself.

Limitations

Multiple poles are numerically sensitive and cannot be computed to high accuracy. A pole λ with multiplicity m typically gives rise to a cluster of computed poles distributed on a circle with center λ and radius of order

$$
\rho \approx \varepsilon^{1 / m}
$$

where ε is the relative machine precision (eps).

More About

Algorithms

For state-space models, the poles are the eigenvalues of the A matrix, or the generalized eigenvalues of $A-\lambda E$ in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are computed as the union of the poles for each SISO entry. If some columns or rows have a common denominator, the roots of this denominator are counted only once.

See Also
damp | esort | dsort | pzmap | zero

polydata

Access polynomial coefficients and uncertainties of identified model

Syntax

```
[A,B,C,D,F] = polydata(sys)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys)
___ = polydata(sys,J1,\ldots,JN)
___ = polydata(___,'cell')
```


Description

$[A, B, C, D, F]=$ polydata(sys) returns the coefficients of the polynomials A, B, C, D, and F that describe the identified model sys. The polynomials describe the idpoly representation of sys as follows.

- For discrete-time sys:

$$
A\left(q^{-1}\right) y(t)=\frac{B\left(q^{-1}\right)}{F\left(q^{-1}\right)} u(t-n k)+\frac{C\left(q^{-1}\right)}{D\left(q^{-1}\right)} e(t)
$$

$u(t)$ are the inputs to sys. $y(t)$ are the outputs. $e(t)$ is a white noise disturbance.

- For continuous-time sys:

$$
A(s) Y(s)=\frac{B(s)}{F(s)} U(s) e^{-\tau s}+\frac{C(s)}{D(s)} E(s)
$$

$U(s)$ are the Laplace transformed inputs to sys. $Y(s)$ are the Laplace transformed outputs. $E(s)$ is the Laplace transform of a white noise disturbance.

If sys is an identified model that is not an idpoly model, polydata converts sys to idpoly form to extract the polynomial coefficients.
$[A, B, C, D, F, d A, d B, d C, d D, d F]=$ polydata(sys) also returns the uncertainties $d A$, $d B, d C, d D$, and $d F$ of each of the corresponding polynomial coefficients of sys.

```
\(=\) polydata(sys,J1,..., JN) returns the polynomial coefficients for the
``` \(\bar{J}, \ldots, \mathrm{JN}\) entry in the array sys of identified models.
\(\qquad\) \(=\) polydata(\(\qquad\) , 'cell') returns all polynomials as cell arrays of double vectors, regardless of the input and output dimensions of sys.

\section*{Input Arguments}

\section*{sys}

Identified model or array of identified models. sys can be continuous-time or discretetime. sys can be SISO or MIMO.

\section*{J1, ..., JN}

Indices selecting a particular model from an N -dimensional array sys of identified models.

\section*{Output Arguments}

\section*{A,B,C,D,F}

Polynomial coefficients of the idpoly representation of sys.
- If sys is a SISO model, each of A, B, C, D, and F is a row vector. The length of each row vector is the order of the corresponding polynomial.
- For discrete-time sys, the coefficients are ordered in ascending powers of \(q^{-1}\). For example, \(\mathrm{B}=\left[\begin{array}{lll}1 & -4 & 9\end{array}\right]\) means that \(B\left(q^{-1}\right)=1-4 q^{-1}+9 q^{-2}\).
- For continuous-time sys, the coefficients are ordered in descending powers of \(s\). For example, \(\mathrm{B}=\left[\begin{array}{lll}1 & -4 & 9\end{array}\right]\) means that \(B(s)=s^{2}-4 s+9\).
- If sys is a MIMO model, each of A, B, C, D, and F is a cell array. The dimensions of the cell arrays are determined by the input and output dimensions of sys as follows:
- A \(-N_{y}\)-by- \(N_{y}\) cell array
- B, F \(-N_{y}\)-by- \(N_{u}\) cell array
- C, D \(-N_{y}\)-by- 1 cell array
\(N_{y}\) is the number of outputs of sys, and \(N_{u}\) is the number of inputs.
Each entry in a cell array is a row vector that contains the coefficients of the corresponding polynomial. The polynomial coefficients are ordered the same way as the SISO case.
\(d A, d B, d C, d D, d F\)
Uncertainties in the estimated polynomial coefficients of sys.
\(\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}\), and dF are row vectors or cell arrays whose dimensions exactly match the corresponding \(A, B, C, D\), and \(F\) outputs.

Each entry in \(\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}\), and dF gives the standard deviation of the corresponding estimated coefficient. For example, \(d A\{1,1\}(2)\) gives the standard deviation of the estimated coefficient returned at \(A\{1,1\}(2)\).

\section*{Examples}

\section*{Polynomial Coefficients of Identified Model and Uncertainties}

Extract the polynomial coefficients, and corresponding standard deviations, of a twoinput, two-output identified idpoly model.

Load system data and estimate a 2 -input, 2 -output model.
```

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];
nk = [1 1; 1 0];
na = [2 2; 1 3];
nb = [2 3; 1 4];
nc = [2;3];
nd = [1;2];
nf = [2 2;2 1];
sys = polyest(data,[na nb nc nd nf nk]);

```

The data loaded into z 1 and z 2 is discrete-time iddata with a sampling time of 0.1 s . Therefore, sys is a two-input, two-output discrete-time idpoly model of the form:
\[
A\left(q^{-1}\right) y(t)=\frac{B\left(q^{-1}\right)}{F\left(q^{-1}\right)} u(t-n k)+\frac{C\left(q^{-1}\right)}{D\left(q^{-1}\right)} e(t)
\]

The inputs to polyest set the order of each polynomial in sys.
Use polydata to access the estimated polynomial coefficients of sys and the uncertainties in those coefficients.
\[
[\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{~F}, \mathrm{dA}, \mathrm{~dB}, \mathrm{dC}, \mathrm{dD}, \mathrm{dF}]=\text { polydata(sys); }
\]

The outputs A, B, C, D, and F are cell arrays of coefficient vectors or arrays. The dimensions of the cell arrays are determined by the input and output dimensions of sys. For example, examine A.

A
\(A=\)
```

[1x3 double] [1x3 double]
[1x2 double] [1x4 double]

```

A is a 2 -by- 2 cell array because sys has two outputs. Each entry in A is a row vector containing identified polynomial coefficients. For example, examine the second diagonal entry in \(A\).

A \(\{2,2\}\)
ans \(=\)
\(\begin{array}{llll}1.0000 & -0.8682 & -0.2244 & 0.4467\end{array}\)
For discrete-time sys, the coefficients are arranged in order of increasing powers of \(q^{-1}\). Therefore, \(\mathrm{A}\{2,2\}\) corresponds to the polynomial \(1-0.8682 q^{-1}-0.2244 q^{-2}+0.4467 q^{-3}\).

Examine the uncertainties dA in the estimated coefficients of \(A\).
dA
\(d A=\)
\begin{tabular}{ll}
{\([1 \times 3\) double] } & {\([1 \times 3\) double \(]\)} \\
{\([1 \times 2\) double] } & {\([1 \times 4\) double \(]\)}
\end{tabular}

The dimensions of dA match those in A. Each entry in dA gives the standard deviation of the corresponding estimated polynomial coefficient of A. For example, examine the uncertainties of the second diagonal entry in \(A\).
dA\{2,2\}
ans \(=\)
```

0 0.2806 0.4204 0.2024

```

The lead coefficient of \(A\{2,2\}\) is fixed at 1 , and therefore has no uncertainty. The remaining entries in \(\mathrm{dA}\{2,2\}\) are the uncertainties in the \(q^{-1}, q^{-2}\), and \(q^{-3}\) coefficients, respectively.

\author{
See Also \\ iddata | idpoly | idssdata | polyest | tfdata | zpkdata
}

\section*{polyest}

Estimate polynomial model using time- or frequency-domain data

\section*{Syntax}
```

sys = polyest(data,[na nb nc nd nf nk])
sys = polyest(data,[na nb nc nd nf nk],Name,Value)
sys = polyest(data,init_sys)
sys = polyest(___, opt)

```

\section*{Description}
sys = polyest(data,[na nb nc nd nf nk]) estimates a polynomial model, sys, using the time- or frequency-domain data, data.
sys is of the form
\[
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]
\(A(q), B(q), F(q), C(q)\) and \(D(q)\) are polynomial matrices. \(u(t)\) is the input, and nk is the input delay. \(y(t)\) is the output and \(e(t)\) is the disturbance signal. na ,nb, nc, nd and nf are the orders of the \(A(q), B(q), C(q), D(q)\) and \(F(q)\) polynomials, respectively.
sys = polyest(data, [na nb nc nd nf nk],Name, Value) estimates a polynomial model with additional attributes of the estimated model structure specified by one or more Name, Value pair arguments.
sys = polyest(data,init_sys) estimates a polynomial model using the dynamic system init_sys to configure the initial parameterization.
sys = polyest(\(\qquad\) , opt) estimates a polynomial model using the option set, opt, to specify estimation behavior.

\section*{Input Arguments}

\section*{data}

Estimation data.
For time-domain estimation, data is an iddata object containing the input and output signal values.

You can estimate only discrete-time models using time-domain data. For estimating continuous-time models using time-domain data, see tfest.

For frequency-domain estimation, data can be one of the following:
- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

It may be more convenient to use oe or tfest to estimate a model for frequencydomain data.
na
Order of the polynomial \(A(q)\).
na is an \(N y\)-by- \(N y\) matrix of nonnegative integers. \(N y\) is the number of outputs, and \(N u\) is the number of inputs.
na must be zero if you are estimating a model using frequency-domain data.

\section*{nb}

Order of the polynomial \(B(q)+1\).
nb is an \(N y\)-by- \(N u\) matrix of nonnegative integers. \(N y\) is the number of outputs, and \(N u\) is the number of inputs.

\section*{nc}

Order of the polynomial \(C(q)\).
nc is a column vector of nonnegative integers of length \(N y . N y\) is the number of outputs. nc must be zero if you are estimating a model using frequency-domain data.

\section*{nd}

Order of the polynomial \(D(q)\).
nd is a column vector of nonnegative integers of length \(N y . N y\) is the number of outputs. nd must be zero if you are estimating a model using frequency-domain data.

\section*{nf}

Order of the polynomial \(F(q)\).
nf is an \(N y\)-by- \(N u\) matrix of nonnegative integers. \(N y\) is the number of outputs, and \(N u\) is the number of inputs.

\section*{nk}

Input delay in number of samples, expressed as fixed leading zeros of the \(B\) polynomial. nk is an \(N y\)-by- \(N u\) matrix of nonnegative integers.
nk must be zero when estimating a continuous-time model.

\section*{opt}

Estimation options.
opt is an options set, created using polyestOptions, that specifies estimation options including:
- Estimation objective
- Handling of initial conditions
- Numerical search method to be used in estimation

\section*{init_sys}

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idpoly model, polyest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

If init_sys is not an idpoly model, the software first converts init_sys to an identified polynomial. polyest uses the parameters of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses and constraints for \(A(q), B(q), F(q), C(q)\), and \(D(q)\).

To specify an initial guess for, say, the \(A(q)\) term of init_sys, set init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the \(B(q)\) term of init_sys:
- Set init_sys.Structure.b.Minimum to the minimum \(B(q)\) coefficient values.
- Set init_sys.Structure.b.Maximum to the maximum \(B(q)\) coefficient values.
- Set init_sys.Structure.b. Free to indicate which \(B(q)\) coefficients are free for estimation.

You can similarly specify the initial guess and constraints for the other polynomials.
If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report.OptionsUsed are used.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'ioDelay'}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array. Each entry of this array is a numerical value that represents the transport delay for the
corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{'InputDelay'}

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

\section*{Default: 0}

\section*{'IntegrateNoise'}

Logical vector specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length \(N y\), where \(N y\) is the number of outputs.
Setting IntegrateNoise to true for a particular output results in the model:
\[
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} \frac{e(t)}{1-q^{-1}}
\]

Where, \(\frac{1}{1-q^{-1}}\) is the integrator in the noise channel, \(e(t)\).
Use IntegrateNoise to create an ARIMAX model.
For example,
load iddata1 z1;
z1 = iddata(cumsum(z1.y), cumsum(z1.u),z1.Ts,'InterSample','foh');
sys = polyest(z1, [2 22001\(], '\) IntegrateNoise',true);

\section*{Output Arguments}

\section*{sys}

Estimated polynomial model.
sys is an idpoly model.
If data.Ts is zero, sys is a continuous-time model representing:
\[
Y(s)=\frac{B(s)}{F(s)} U(s)+E(s)
\]
\(Y(s), U(s)\) and \(E(s)\) are the Laplace transforms of the time-domain signals \(y(t), u(t)\) and \(e(t)\), respectively.

\section*{Examples}

\section*{Estimate Model with Redundant Parameterization}

Estimate a polynomial model with redundant parameterization. That is, all the polynomials (\(A, B, C, D\), and \(F\)) are active.

Obtain input/output data.
```

load iddata2 z2

```

Estimate the model.
```

na = 2;
nb = 2;
nc = 3;
nd = 3;
nf = 2;
nk = 1;
sys = polyest(z2,[na nb nc nd nf nk]);

```

Estimate Polynomial Model Using Regularization
Estimate a regularized polynomial model by converting a regularized ARX model.

Load data.
```

load regularizationExampleData.mat mOsimdata;

```

Estimate an unregularized polynomial model of order 20.
```

m1 = polyest(mOsimdata(1:150), [0 20 20 20 20 1]);

```

Estimate a regularized polynomial model by determining Lambda value by trial and error.
```

opt = polyestOptions;
opt.Regularization.Lambda = 1;
m2 = polyest(mOsimdata(1:150),[0 20 20 20 20 1], opt);

```

Obtain a lower-order polynomial model by converting a regularized ARX model followed by order reduction.
```

opt1 = arxOptions;
[L,R] = arxRegul(mOsimdata(1:150), [30 30 1]);
opt1.Regularization.Lambda = L;
opt1.Regularization.R = R;
m0 = arx(mOsimdata(1:150),[30 30 1],opt1);
mr = idpoly(balred(idss(m0),7));

```

Compare the model outputs against data.
```

compare(mOsimdata(150:end), m1, m2, mr, compareOptions('InitialCondition','z'));

```

\section*{Estimate ARIMAX model}

Obtain input/output data.
```

load iddata1 z1;
data = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');

```

Identify an ARIMAX model. Set the inactive polynomials, \(F\) and \(D\), to zero.
```

na = 2;
nb = 2;
nc = 2;
nd = 0;
nf = 0;
nk = 1;

```
```

sys = polyest(data,[na nb nc nd nf nk],'IntegrateNoise',true);

```

\section*{Estimate Multi-Output ARMAX Model}

Estimate a multi-output ARMAX model for a multi-input, multi-output data set.
Obtain input/output data.
```

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

```
data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly, the second input affects only the second output.

Estimate the model.
```

na = [2 2; 2 2];
nb = [2 2; 3 4];
nk = [1 1; 0 0];
nc = [2;2];
nd = [0;0];
nf = [0 0; 0 0];
sys = polyest(data,[na nb nc nd nf nk])

```

In the estimated ARMAX model, the cross terms, modeling the effect of the first input on the second output and vice versa, are negligible. If you assigned higher orders to those dynamics, their estimation would show a high level of uncertainty.

The \(F\) and \(D\) polynomials of sys are inactive.
Analyze the results.
```

h = bodeplot(model);
showConfidence(h,3)

```

The responses from the cross terms show larger uncertainty.

\section*{Alternatives}
- To estimate a polynomial model using time-series data, use ar.
- Use polyest to estimate a polynomial of arbitrary structure. If the structure of the estimated polynomial model is known, that is, you know which polynomials will be active, then use the appropriate dedicated estimating function. For examples, for an ARX model, use arx. Other polynomial model estimating functions include, oe, armax, and bj.
- To estimate a continuous-time transfer function, use tfest. You can also use oe, but only with continuous-time frequency-domain data.

\section*{More About}

\section*{Tips}
- In most situations, all the polynomials of an identified polynomial model are not simultaneously active. Set one or more of the orders na, nc, nd and nf to zero to simplify the model structure.

For example, you can estimate an Output-Error (OE) model by specifying na, nc and nd as zero.

Alternatively, you can use a dedicated estimating function for the simplified model structure. Linear polynomial estimation functions include oe, bj, arx and armax.
- "Regularized Estimates of Model Parameters"

\section*{See Also}
```

ar | armax | arx | bj | forecast | iddata | idpoly | oe | pem | polyestOptions
| procest| ssest| tfest

```

\section*{polyestOptions}

Option set for polyest

\section*{Syntax}
```

opt = polyestOptions

```
opt = polyestOptions(Name, Value)

\section*{Description}
opt = polyestOptions creates the default options set for polyest.
opt = polyestOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'InitialCondition'}

Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:
- 'zero' - The initial condition is set to zero.
- 'estimate ' - The initial state is treated as an independent estimation parameter.
- 'backcast ' - The initial state is estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial states based on the estimation data.

Default: 'auto'
'Focus'
Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:
- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This approach minimizes one-stepahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method ignores the approximation aspects (bias) of the fit, and might not result in a stable model. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]

```
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. You receive an estimation result that is the same as if you had prefiltered using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

\section*{Default: 'prediction'}
'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

\section*{' Display ' - Specify whether to display the estimation progress}
```

'off' (default)| 'on'

```

Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:
- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed
' InputOffset ' - Remove offset from time-domain input data during estimation
[] (default) | vector of positive integers
Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{' OutputOffset ' - Remove offset from time-domain output data during estimation [] (default) | vector}

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{'Regularization'}

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:
- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

\section*{Default: 0}
- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of \(n p\) positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

\section*{Default: 1}
- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

\section*{'SearchMethod'}

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:
- 'gn ' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J))*norm(J) are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- 'gna' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninne. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where \(s v\) are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). gamma is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. gamma is decreased by a factor of \(2 *\) LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method. The next parameter value is pinv (\(\mathrm{H}+\mathrm{d} * \mathrm{I}\)) *grad from the previous one. \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox software. This search method can handle only the Trace criterion.
- 'grad' - The steepest descent gradient search method.
- 'auto' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{'SearchOption'}

Options set for the search algorithm.

\section*{SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'Im', 'grad', or 'auto'}

\section*{Field Description Name}

Toleran Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
MaxIter Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the start-up procedure.
Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
Advance Advanced search settings.
Specified as a structure with the following fields:
\begin{tabular}{|c|c|c|}
\hline Field & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{8}{*}{} & Field Name & Description \\
\hline & GnPinvCon: & \begin{tabular}{l}
Singular values of the Jacobian matrix that are smaller than GnPinvConst*max (size (J) *norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'. \\
GnPinvConst must be a positive, real value. \\
Default: 10000
\end{tabular} \\
\hline & InitGnaTo. & \begin{tabular}{l}
Initial value of gamma. Applicable when SearchMethod is 'gna'. \\
Default: 0.0001
\end{tabular} \\
\hline & LMStartVa. & \begin{tabular}{l}
Starting value of search-direction length \(d\) in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. \\
Default: 0.001
\end{tabular} \\
\hline & LMStep & \begin{tabular}{l}
Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. \\
Default: 2
\end{tabular} \\
\hline & MaxBisect & \begin{tabular}{l}
Maximum number of bisections used by the line search along the search direction. \\
Default: 25
\end{tabular} \\
\hline & MaxFunEva. & \begin{tabular}{l}
Iterations stop if the number of calls to the model file exceeds this value. \\
MaxFunEvals must be a positive, integer value. \\
Default: Inf
\end{tabular} \\
\hline & MinParChal & Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & \multicolumn{2}{l|}{ Description } \\
& Field Name & Description \\
\cline { 2 - 5 } & & Default: 0
\end{tabular} \left\lvert\, \begin{tabular}{ll}
RelImprov & \begin{tabular}{l}
Iterations stop if the relative improvement of the criterion \\
function is less than RelImprovement. \\
RelImprovement must be a positive, integer value. \\
Default: 0
\end{tabular} \\
\hline & StepReduc
\end{tabular} \begin{tabular}{l}
Suggested parameter update is reduced by the factor \\
StepReduction after each try. This reduction continues until \\
either MaxBisections tries are completed or a lower value of \\
the criterion function is obtained. \\
StepReduction must be a positive, real value that is greater \\
than 1. \\
Default: 2
\end{tabular}\right.

\section*{SearchOption structure when SearchMethod is specified as 'Isqnonlin'}
\begin{tabular}{|ll|}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & Description \\
\hline TolFun & \begin{tabular}{l}
Termination tolerance on the loss function that the software minimizes to \\
determine the estimated parameter values.
\end{tabular} \\
& \begin{tabular}{l}
The value of TolFun is the same as that of \\
sys.SearchOption. Advanced. TolFun. \\
Default: 1e-5
\end{tabular} \\
\hline TolX & \begin{tabular}{l}
Termination tolerance on the estimated parameter values. \\
The value of TolX is the same as that of \\
sys.SearchOption. Advanced. TolX.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & Description \\
\hline \multicolumn{1}{|c|}{\begin{tabular}{l}
Maxiter
\end{tabular}} & \begin{tabular}{l}
Maximum number of iterations during loss-function minimization. The \\
iterations stop when MaxIter is reached or another stopping criterion is \\
satisfied, such as TolFun etc. \\
The value of MaxIter is the same as that of \\
sys. SearchOption. Advanced. MaxIter. \\
Default: 20
\end{tabular} \\
\hline Advance & \begin{tabular}{l}
Options set for lsqnonlin. \\
For more information, see the Optimization Options table in "Optimization \\
Options". \\
\begin{tabular}{l}
Use optimset (' lsqnonlin ') to create an options set for lsqnonlin, and \\
then modify it to specify its various options.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{'Advanced'}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [2].

ErrorThreshold \(=0\) disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- \(s\) - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s.

\section*{Default: 0}
- \(\quad\) z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: \(1+\) sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial condition.

The initial condition is estimated when
\[
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
\]
- \(y_{\text {meas }}\) is the measured output.
- \(y_{p, z}\) is the predicted output of a model estimated using zero initial states.
- \(y_{p, e}\) is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto '.
Default: 1.05

\section*{Output Arguments}

\section*{opt}

Option set containing the specified options for polyest.

\section*{Examples}

\section*{Create Default Options Set for Polynomial Estimation}
opt = polyestOptions;

\section*{Specify Options for Polynomial Estimation}

Create an options set for polyest using the 'stability' for Focus, and set the Display to 'on'.
```

opt = polyestOptions('Focus','stability','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = polyestOptions;
opt.Focus = 'stability';
opt.Display = 'on';

```

\section*{References}
[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.

\author{
See Also \\ polyest
}

\section*{polyreg}

Powers and products of standard regressors

\section*{Syntax}
\(R=\) polyreg(model)
\(R=\) polyreg(model,'MaxPower', \(n\))
\(R=\) polyreg(model,'MaxPower', \(n, '\) CrossTerm',CrossTermVal)

\section*{Description}
\(R=\) polyreg (model) creates an array \(R\) of polynomial regressors up to the power 2 . If a model order has input \(u\) and output \(y, n a=n b=2\), and delay \(n k=1\), polynomial regressors are \(y(t-1)^{2}, u(t-1)^{2}, y(t-2)^{2}, u(t-2)^{2}\). model is an idnlarx object. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.
\(R=\) polyreg(model, 'MaxPower',\(n\)) creates an array \(R\) of polynomial regressors up to the power \(n\). Excludes terms of power 1 and cross terms, such as \(y(t-1)^{*} u(\mathrm{t}-1)\).
\(R=\) polyreg(model,'MaxPower', \(n\), 'CrossTerm',CrossTermVal) creates an array \(R\) of polynomial regressors up to the power \(n\) and includes cross terms (products of standards regressors) when CrossTermVal is 'on '. By default, CrossTermVal is 'off'.

\section*{Examples}

Create polynomial regressors up to order 2:
```

% Estimate a nonlinear ARX model with
% na=nb=2 and nk=1.
% Nonlinearity estimator is wavenet.
load iddata1
m = nlarx(z1,[2 2 1])
% Create polynomial regressors:
R = polyreg(m);

```
```

% Estimate model:
m = nlarx(z1,[2 2 1],'wavenet','CustomReg',R);
% View all model regressors (standard and custom):
getreg(m)

```

Create polynomial regressors up to order 3:
\(R=\) polyreg(m,'MaxPower',3,'CrossTerm', 'on')
If the model \(m\) that has three standard regressors \(a, b\) and \(c, R\) includes \(a^{\wedge} 2, b^{\wedge} 2, c^{\wedge} 2\), \(a^{*} b, a^{\star} c, b^{*} c, a^{\wedge} 2^{*} b, a^{\wedge} 2^{\star} c, a^{*} b^{\wedge} 2, a^{*} b^{\star} c, a^{*} c^{\wedge} 2, b^{\wedge} 2^{*} c, b^{\star} c^{\wedge} 2, a^{\wedge} 3, b^{\wedge} 3\), and \(c^{\wedge} 3\).

\section*{More About}
- "Identifying Nonlinear ARX Models"

\author{
See Also \\ addreg | customreg | getreg | idnlarx | nlarx
}

\section*{polyld}

Class representing single-variable polynomial nonlinear estimator for HammersteinWiener models

\section*{Syntax}
```

t=poly1d('Degree',n)
t=poly1d('Coefficients',C)
t=poly1d(n)

```

\section*{Description}
poly1d is an object that stores the single-variable polynomial nonlinear estimator for Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
\(t=p o l y 1 d(\) 'Degree', \(n\)) creates a polynomial nonlinearity estimator object of nth degree.
t=poly1d('Coefficients', C) creates a polynomial nonlinearity estimator object with coefficients \(C\).
\(t=\operatorname{poly} 1 \mathrm{~d}(\mathrm{n})\) a polynomial nonlinearity estimator object of \(n\)th degree.
Use evaluate \((p, x)\) to compute the value of the function defined by the poly1d object \(p\) at \(x\).

\section*{poly 1d Properties}

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(p)
% Get value of Coefficients property

```
p.Coefficients
\begin{tabular}{|l|l|}
\hline Property Name & Description \\
\hline Degree & \begin{tabular}{l}
Positive integer specifies the degree of the polynomial \\
Default=1. \\
For example: \\
poly1d (' Degree ', 3\()\)
\end{tabular} \\
\hline Coefficients & \(1-b y-(\mathrm{n}+1)\) matrix containing the polynomial coefficients. \\
\hline
\end{tabular}

\section*{Examples}

Use poly1s to specify the single-variable polynomial nonlinearity estimator in Hammerstein-Wiener models. For example:
```

m=nlhw(Data,Orders,poly1d('deg',3),[]);

```
where 'deg' is an abbreviation for the property 'Degree'.

\section*{More About}

\section*{Tips}

Use poly1d to define a nonlinear function \(y=F(x)\), where \(F\) is a single-variable polynomial function of \(x\) :
\[
F(x)=c(1) x^{n}+c(2) x^{(n-1)}+\ldots+c(n) x+c(n+1)
\]

\section*{See Also \\ nlhw}

\section*{predict}

K-step ahead prediction

\section*{Syntax}
```

yp = predict(sys,data,K)
yp = predict(sys,data,K,opt)
[yp,x0e,sys_pred] = predict(sys,data,K, ___)
predict(sys,data,K___)

```

\section*{Description}
yp = predict(sys,data,K) predicts the output of an identified model, sys, K steps ahead using input-output data history from data.
yp = predict(sys,data, K,opt) predicts the output using the option set opt to configure prediction behavior.
[yp,x0e,sys_pred] = predict(sys,data, K, __) also returns the estimated initial state, x0e, and a predictor system, sys_pred.
predict (sys, data, K___) plots the predicted output.
An important use of predict is to evaluate a model's properties in the mid-frequency range. Simulation with sim (which conceptually corresponds to \(k=i n f\)) can lead to diverging outputs. Such divergence occurs because sim emphasizes the low-frequency behavior. One step-ahead prediction is not a powerful test of the model's properties, because the high-frequency behavior is stressed. The trivial predictor \(\hat{y}(t)=y(t-1)\) can give good predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate time-series models. The natural way of studying a time-series model's ability to reproduce observations is to compare its \(k\) stepahead predictions with actual data.

For Output-Error models, there is no difference between the \(k\) step-ahead predictions and the simulated output. This lack of difference occurs because, by definition, Output-Error models only use past inputs to predict future outputs.

\section*{Difference Between forecast and predict Functions}
predict predicts the response over the time span of data. forecast performs prediction into the unseen future, which is a time range beyond the last instant of measured data. predict is a tool for validating the quality of an estimated model. Use predict to determine if the prediction result matches the observed response in data.OutputData. If sys is a good prediction model, consider using it with forecast (only supports linear models).

\section*{Input Arguments}

\section*{sys}

Identified model.
sys may be a linear or nonlinear identified model.

\section*{data}

Measured input-output data.
Specify data as an iddata object.
If sys is a time-series model, which has no input signals, then specify data as an iddata object with no inputs, or a matrix of past (already observed) time-series data.

\section*{K}

Prediction horizon.
Specify K as a positive integer that is a multiple of the data sample-time. To obtain a pure simulation of the system, specify \(K\) as Inf.

Default: 1

\section*{opt}

Prediction options.
opt is an option set, created using predictOptions, that specifies options including:
- Handling of initial conditions
- Data offsets

\section*{Output Arguments}

\section*{yp}

Predicted output.
yp is an iddata object. The OutputData property stores the values of the predicted output.

Outputs up to the time \(\mathrm{t}-\mathrm{K}\) and inputs up to the time instant t are used to predict the output at the time instant \(t\). The time variable takes values in the range represented by data. SamplingInstants.

When K = Inf, the predicted output is a pure simulation of the system.
For multi-experiment data, yp contains a predicted data set for each experiment. The time span of the predicted outputs matches that of the observed data.

When sys is specified using an idnlhw or idnlgrey model, yp is the same as the simulated response computed using data. InputData as input.
x0e
Estimated initial states.

\section*{sys_pred}

Predictor system.
sys_pred is a dynamic system whose simulation, using [data.OutputData data. InputData] as input, yields yp.OutputData as the output.

For discrete-time data, sys_pred is always a discrete-time model.
For multi-experiment data, sys_pred is an array of models, with one entry for each experiment.

When sys is a nonlinear model, sys_pred is [].

\section*{Examples}

\section*{Predict Time-Series Model Response}

Simulate a time-series model.
```

init_sys = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
data = sim(init_sys,e);

```
data is an iddata object containing the simulated response data of a time-series model.
Estimate an ARMAX model for the simulated data.
```

na = 1;
nb = 2;
sys = armax(data(1:200),[na nb]);

```
sys is an idpoly model of the identified ARMAX model.
Obtain a 4 step-ahead prediction for the estimated model.
```

K = 4;
yp = predict(sys,data,K);

```
yp is an iddata object. To obtain the values of the predicted output, type yp.OutputData.

Analyze the prediction.
```

plot(data(201:400),yp(201:400));
legend('Simulated data','Predicted data');

```

\section*{Input-Output Data}

Alternatively, use compare to substitute the use of predict and plot. For example, use compare(data, sys,K).

\section*{See Also}
ar | arx | compare | forecast | iddata | idpar | lsim | n4sid | pe |
predictOptions | sim | simsd

\section*{predictOptions}

Option set for predict

\section*{Syntax}
```

opt = predictOptions

```
opt = predictOptions(Name, Value)

\section*{Description}
opt \(=\) predictOptions creates the default options set for predict.
opt = predictOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'InitialCondition'}

Specify the handling of initial conditions.
InitialCondition takes one of the following:
- 'z' — Zero initial conditions.
- 'e' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e ', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with \(N e\) columns, where \(N e\) is the number of experiments. Use this option only for state-space and nonlinear models.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval. This interval must start before the start time of the data used by predict. In case the data used by predict is a time series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multiexperiment data, specify io as a struct array of \(N e\) elements, where \(N e\) is the number of experiments.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

For an idnlgrey model, InitialCondition can also be one of the following:
- 'fixed' - sys.InitialState determines the values of the initial states, but all the states are considered fixed for estimation.
- 'model' - sys. InitialState determines the values of the initial states, which states to estimate and their minimum/maximum values.

\section*{Default: 'e'}
'Input0ffset'
Input signal offset.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data before the input is used to simulate the model.

Default: []
'OutputOffset'
Output signal offset.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.
Default: []

\section*{'OutputWeight'}

Weight of output for initial condition estimation.
OutputWeight takes one of the following:
- [] - No weighting is used. This option is the same as using eye (Ny) for the output weight, where \(N y\) is the number of outputs.
- 'noise ' - Inverse of the noise variance stored with the model.
- matrix - A positive, semidefinite matrix of dimension \(N y\)-by- \(N y\), where \(N y\) is the number of outputs.

\section*{Default: []}

\section*{Output Arguments}

\section*{opt}

Option set containing the specified options for predict.

\section*{Examples}

\section*{Create Default Options Set for Model Prediction}
opt = predictOptions;

\section*{Specify Options for Model Prediction}

Create an options set for predict using zero initial conditions and set the input offset to 5.
```

opt = predictOptions('InitialCondition','z','InputOffset',5);

```

Alternatively, use dot notation to set the values of opt.
opt = predictOptions;
opt.InitialCondition = 'z'; opt.InputOffset = 5;

\author{
See Also \\ absorbdelay | idpar | predict
}

\section*{present}

Display model information, including estimated uncertainty

\section*{Syntax}
```

present(m)

```

\section*{Description}

The present function displays the model m , together with the estimated standard deviations of the parameters, loss function, and Akaike's Final Prediction Error (FPE) Criterion (which essentially equals the AIC). It also displays information about how m was created.
\(m\) is linear or nonlinear identified model.
present thus gives more detailed information about the model than the standard display function.
```

See Also
getcov | getpvec | idssdata | polydata | tfdata | zpkdata

```

\section*{procest}

Estimate process model using time or frequency data

\section*{Syntax}
```

sys = procest(data,type)
sys = procest(data,type,Name,Value)
sys = procest(data,init_sys)
sys = procest(data,

```
\(\qquad\)
``` ,opt)
```


Description

sys = procest(data,type) estimates a process model, sys, using time or frequency domain data, data. type defines the structure of sys.
sys = procest(data,type, Name, Value) estimates a process model with additional options specified by one or more Name,Value pair arguments.
sys = procest (data, init_sys) estimates a process model using the dynamic system init_sys to configure the initial parameterization.
sys = procest(data, __ , opt) estimates a polynomial model using an option set, opt, to specify estimation behavior.

Input Arguments

data

Estimation data.
For time domain estimation, data must be an iddata object containing the input and output signal values.

Time-series models, which are models that contain no measured inputs, cannot be estimated using procest. Use ar, arx, or armax for time-series models instead.

For frequency domain estimation, data can be one of the following:

- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'
data must have at least one input and one output.

type

Process model structure.
type is an acronym that defines the structure of a process model. The acronym string is made up of:

- P - All 'Type' acronyms start with this letter.
- 0, 1, 2, or 3 - Number of time constants (poles) to be modeled. Possible integrations (poles in the origin) are not included in this number.
- I — Integration is enforced (self-regulating process).
- D - Time delay (dead time).
- Z - Extra numerator term, a zero.
- \mathbf{U} - Underdamped modes (complex-valued poles) permitted. If U is not included in type, all poles must be real. The number of poles must be 2 or 3 .

For information regarding how type affects the structure of a process model, see idproc.
For multiple input/output pairs use a cell array of acronyms, with one entry for each input/output pair.

Default:

opt

Estimation options.
opt is an options set, created using procestOptions, that specifies options including:

- Estimation objective
- Handling on initial conditions and disturbance component
- Numerical search method to be used in estimation

init_sys

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idproc model, procest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

If init_sys is not an idproc model, the software first converts init_sys to an identified process model. procest uses the parameters of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses and constraints for $K p, T_{p 1}, T_{p 2}, T_{p 3}, T_{w}, Z e t a, T_{d}$, and T_{z}.

To specify an initial guess for, say, the $T_{p 1}$ parameter of init_sys, set init_sys.Structure.Tp1.Value as the initial guess.

To specify constraints for, say, the $T_{p 2}$ parameter of init_sys:

- Set init_sys.Structure.Tp2.Minimum to the minimum $T_{p 2}$ value.
- Set init_sys.Structure.Tp2.Maximum to the maximum $T_{p 2}$ value.
- Set init_sys.Structure.Tp2.Free to indicate if $T_{p 2}$ is a free parameter for estimation.

You can similarly specify the initial guess and constraints for the other parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

'InputDelay'

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

Output Arguments

sys

Identified process model.
sys is an idproc model with a structure defined by type.

Examples

Estimate a First Order Plus Dead Time Model

Obtain the measured input/output data.

```
load iddemo_heatexchanger_data;
data = iddata(pt,ct,Ts);
```

Estimate a first-order plus dead time process model.

```
type = 'P1D';
sys = procest(data,type);
```


Estimate Over-parameterized Process Model Using Regularization

Use regularization to estimate parameters of an over-parameterized process model.
Assume that gain is known with a higher degree of confidence than other model parameters.

Load data.
load iddata1 z1;
Estimate an unregularized process model.

```
m = idproc('P3UZ', 'K', 7.5, 'Tw', 0.25, 'Zeta', .3, 'Tp3', 20, 'Tz', 0.02);
m1 = procest(z1,m);
```

Estimate a regularized process model.

```
opt = procestOptions;
opt.Regularization.Nominal = 'model';
opt.Regularization.R = [100;1;1;1;1];
opt.Regularization.Lambda = 0.1;
m2 = procest(z1,m,opt);
```

Compare the model outputs with data.

```
compare(z1, m1, m2);
```


1-823

Regularization helps steer the estimation process towards the correct parameter values.

Specify Parameter Initial Values for Estimated Process Model

Estimate a process model after specifying initial guesses for parameter values and bounding them.

Obtain input/output data.

```
data = idfrd(idtf([l0 2],[1 1.3 1.2],'iod',0.45),logspace(-2,2,256));
```

Specify the estimation initializing model.

```
type = 'P2UZD';
init_sys = idproc(type);
init_sys.Structure.Kp.Value = 1;
init_sys.Structure.Tw.Value = 2;
init_sys.Structure.Zeta.Value = 0.1;
init_sys.Structure.Td.Value = 0;
init_sys.Structure.Tz.Value = 1;
init_sys.Structure.Kp.Minimum = 0.1;
init_sys.Structure.Kp.Maximum = 10;
init_sys.Structure.Td.Maximum = 1;
init_sys.Structure.Tz.Maximum = 10;
```

Specify estimation options.

```
opt = procestOptions('Display','full','InitialCondition','Zero');
opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 100;
```

Estimate the process model.

```
sys = procest(data,init_sys,opt);
```

Compare the data to the estimated model.
compare(data, sys,init_sys);

Detect Overparameterization of Estimated Model

Obtain input/output data.

```
load iddata1 z1
```

```
load iddata2 z2
data = [z1, z2(1:300)];
```

data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly, the second input affects only the second output.

In the estimated process model, the cross terms, modeling the effect of the first input on the second output and vice versa, should be negligible. If higher orders are assigned to those dynamics, their estimations show a high level of uncertainty.

Estimate the process model.

```
type = 'P2UZ';
sys = procest(data,type);
```

The type variable denotes a model with complex-conugate pair of poles, a zero, and a delay.

To evaluate the uncertainties, plot the frequency response.

```
w = linspace(0,20*pi,100);
h = bodeplot(sys,w);
showConfidence(h);
```


More About

- "Regularized Estimates of Model Parameters"

See Also

ar | arx | bj | idproc | oe | polyest | procestOptions | ssest | tfest

procestOptions

Options set for procest

Syntax

```
opt = procestOptions
opt = procestOptions(Name,Value)
```


Description

opt = procestOptions creates the default options set for procest.
opt = procestOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.

'InitialCondition'

Specify how initial conditions are handled during estimation.
InitialCondition requires one of the following values:

- 'zero' - The initial condition is set to zero.
- 'estimate' - The initial condition is treated as an independent estimation parameter.
- 'backcast' - The initial condition is estimated using the best least squares fit.
- 'auto ' - The software chooses the method to handle initial condition based on the estimation data.

Default: 'auto'

'DisturbanceModel'

Specify how the handling of additive noise (H) during estimation for the model

$$
y=G(s) u+H(s) e
$$

e is white noise, u is the input and y is the output.
$H(s)$ is stored in the NoiseTF property of the numerator and denominator of idproc models.

DisturbanceModel requires one of the following strings:

- 'none' - H is fixed to one.
- 'estimate' - H is treated as an estimation parameter. The software uses the value of the NoiseTF property as the initial guess.
- 'ARMA1 ' - The software estimates H as a first-order ARMA model

$$
\frac{1+c s}{1+d s}
$$

- 'ARMA2 ' - The software estimates H as a second-order ARMA model

$$
\frac{1+c_{1} s+c_{2} s^{2}}{1+d_{1} s+d_{2} s^{2}}
$$

- 'fixed ' - The software fixes the value of the NoiseTF property of the idproc model as the value of H.

Note: A noise model cannot be estimated using frequency domain data.

Default: 'estimate'

'Focus'

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:

- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power. This method provides a stable model.
- prediction - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction. This approach typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability ' when you want to ensure a stable model.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. You receive an estimation result that is the same as if you had first prefiltered using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same length as the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

'EstCovar' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

'Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

'InputOffset'

Removes offset from time domain input data during estimation.
Specify InputOffset as one of the following:

- 'estimate' - The software treats the input offsets as an estimation parameter.
- 'auto ' - The software chooses the method to handle input offsets based on the estimation data and the model structure. The estimation either assumes zero input offset or estimates the input offset.

For example, the software estimates the input offset for a model that contains an integrator.

- A column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to specify no offsets.
In case of multi-experiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

- A parameter object, constructed using param. Continuous, that imposes constraints on how the software estimates the input offset.

For example, create a parameter object for a 2 -input model estimation. Specify the first input offset as fixed to zero and the second input offset as an estimation parameter.

```
opt = procestOptions;
uO = param.Continuous('uO',[0;NaN]);
u0.Free(1) = false;
opt.Inputoffset = u0;
```

Default: 'auto'

' OutputOffset' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'OutputWeight'

Specifies criterion used during minimization.
OutputWeight can have the following values:

- 'noise ' - Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates when nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.
- Positive, semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace $\left(E^{\prime} * E * W\right)$. E is the matrix of prediction errors, with
one column for each output. W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

- [] - The software chooses between the 'noise ' or using the identity matrix for W.

Default: []

'Regularization'

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0

- R - Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters
towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

'SearchMethod'

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:

- 'gn' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J) are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- 'gna' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [2]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where $s v$ are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). gamma is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. gamma is decreased by a factor of 2*LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method so that the next parameter value is pinv ($\mathrm{H}+\mathrm{d} * \mathrm{I}$) *grad from the previous one, where H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox software. This search method can handle only the Trace criterion.
- 'grad ' - The steepest descent gradient search method.
- 'auto ' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

'Search0ption'

Options set for the search algorithm.

SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'lm', 'grad', or 'auto'

Field Name	Description	
Toleran	Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value. Default: 0.01	
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance. Setting MaxIter $=0$ returns the result of the start-up procedure. Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model. Default: 20	
Advance	Advanced search settings. Specified as a structure with the following fields:	
	Field Name	Description
	GnPinvCon	Singular values of the Jacobian matrix that are smaller than GnPinvConst*max (size (J) *norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'. GnPinvConst must be a positive, real value. Default: 10000
	InitGnaTo.	Initial value of gamma. Applicable when SearchMethod is 'gna'.

Field	Description	
	Field Name	Description
		Default: 0.0001
	LMStartVa.	Starting value of search-direction length d in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. Default: 0.001
	LMStep	Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. Default: 2
	MaxBisect.	Maximum number of bisections used by the line search along the search direction. Default: 25
	MaxFunEva.	Iterations stop if the number of calls to the model file exceeds this value. MaxFunEvals must be a positive, integer value. Default: Inf
	MinParCha	Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. Default: 0
	RelImprov	Iterations stop if the relative improvement of the criterion function is less than RelImprovement. RelImprovement must be a positive, integer value. Default: 0
	StepReduc	Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until

Field Name	Description	
	Field Name	Description
		either MaxBisections tries are completed or a lower value of the criterion function is obtained. StepReduction must be a positive, real value that is greater than 1. Default: 2

SearchOption structure when SearchMethod is specified as 'Isqnonlin'

Field Name	Description
TolFun	Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values. The value of TolFun is the same as that of sys.SearchOption. Advanced. TolFun. Default: 1e-5
TolX	Termination tolerance on the estimated parameter values. The value of TolX is the same as that of sys.SearchOption. Advanced. TolX. Default: 1e-6
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.
	The value of MaxIter is the same as that of sys.SearchOption. Advanced. MaxIter.
	Default: 20

```
Field Description
Name
Advance Options set for lsqnonlin.
For more information, see the Optimization Options table in "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin, and then modify it to specify its various options.
```


'Advanced'

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [1].

ErrorThreshold $=0$ disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

$$
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
$$

- $y_{\text {meas }}$ is the measured output.
- $y_{p, z}$ is the predicted output of a model estimated using zero initial states.
- $y_{p, e}$ is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto '.
Default: 1.05

Output Arguments

opt

Option set containing the specified options for procest.

Examples

Create Default Options Set for Process Model Estimation

opt = procestOptions;

Specify Options for Process Model Estimation

Create an options set for procest using the 'stability' for Focus and set the Display to 'on'.

```
opt = procestOptions('Focus','stability','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = procestOptions;
opt.Focus = 'stability';
opt.Display = 'on';
```


References

[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[2] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for
Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.

See Also

idfilt | idproc | procest

pwlinear

Class representing piecewise-linear nonlinear estimator for Hammerstein-Wiener models

Syntax

```
t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)
```


Description

pwlinear is an object that stores the piecewise-linear nonlinear estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
t=pwlinear('NumberOfUnits',N) creates a piecewise-linear nonlinearity estimator object with N breakpoints.
t=pwlinear('BreakPoints', BP) creates a piecewise-linear nonlinearity estimator object with breakpoints at values BP.
t=pwlinear(Property1, Value1, ...PropertyN, ValueN) creates a piecewise-linear nonlinearity estimator object specified by properties in "pwlinear Properties" on page 1-839.

Use evaluate (p, x) to compute the value of the function defined by the pwlinear object p at x .

pwlinear Properties

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(p)
% Get value of NumberOfUnits property
p.NumberOfUnits
```

Property Name	Description
NumberOfUnits	Integer specifies the number of breakpoints. Default=10. For example: pwlinear ('NumberOfUnits ', 5$)$
BreakPoints	2 -by-n matrix containing the breakpoint x and y value, specified using the following format: $\left[x_{1}, x_{2}, \ldots ., x_{n} ; y_{1}, y_{2}, \ldots, y_{n}\right]$. If set to a 1-by-n vector, the values are interpreted as x -values and the corresponding y-values are set to zero.

Examples

Use pwlinear to specify the piecewise nonlinearity estimator in Hammerstein-Wiener models. For example:

```
m=nlhw(Data,Orders,pwlinear('Br',[-1:0.1:1]),[]);
```

The piecewise nonlinearity is initialized at the specified breakpoints. The breakpoint values are adjusted to the estimation data by nlhw.

More About

Tips

Use pwlinear to define a nonlinear function $y=F(x)$, where F is a piecewise-linear (affine) function of x and there are n breakpoints $\left(x_{k}, y_{k}\right), k=1, \ldots, n . y_{k}=\mathrm{F}\left(x_{k}\right) . F$ is linearly interpolated between the breakpoints. y and x are scalars.
F is also linear to the left and right of the extreme breakpoints. The slope of these extension is a function of x_{i} and y_{i} breakpoints. The breakpoints are ordered by ascending x -values, which is important when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and the values actually stored in the object because the toolbox represent breakpoints differently internally.

See Also

nlhw

pzmap

Pole-zero plot of dynamic system

Syntax

```
pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)
```


Description

pzmap(sys) creates a pole-zero plot of the continuous- or discrete-time "dynamic system model" sys. For SISO systems, pzmap plots the transfer function poles and zeros. For MIMO systems, it plots the system poles and transmission zeros. The poles are plotted as x 's and the zeros are plotted as o's.
pzmap (sys1, sys2, ...,sysN) creates the pole-zero plot of multiple models on a single figure. The models can have different numbers of inputs and outputs and can be a mix of continuous and discrete systems.
$[p, z]=p z m a p(s y s)$ returns the system poles and (transmission) zeros in the column vectors p and z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the s - or z-plane.

Examples

Example 1

Pole-Zero Plot of Dynamic System

Plot the poles and zeros of the continuous-time system

$$
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

```
H = tf([[2 5 1],[\begin{array}{lll}{1}&{2}&{3}\end{array}]); sgrid
pzmap(H)
grid on
```


Example 2

Plot the pzmap for a 2 -input-output discrete-time IDSS model.

```
A = [0.1 0; 0.2 0.9]; B = [.1 .2; 0.1 .02]; C = [10 20; 2 -5]; D = [1 2; 0 1];
sys = idss(A,B,C,D, 'Ts', 0.1);
```


More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Algorithms

pzmap uses a combination of pole and zero.

See Also

damp | esort | dsort | pole | rlocus | sgrid | zgrid | zero | iopzmap

pzoptions

Create list of pole/zero plot options

Syntax

```
P = pzoptions
P = pzoption('cstprefs')
```


Description

$P=p z o p t i o n s ~ r e t u r n s ~ a ~ l i s t ~ o f ~ a v a i l a b l e ~ o p t i o n s ~ f o r ~ p o l e / z e r o ~ p l o t s ~(p o l e / z e r o, ~ i n p u t-~$ output pole/zero and root locus) with default values set.. You can use these options to customize the pole/zero plot appearance from the command line.

P = pzoption('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

This table summarizes the available pole/zero plot options.

Option	Description
Title, XLabel, YLabel	Label text and style
TickLabel	Tick label style
Grid	Show or hide the grid Specified as one of the following strings: 'off ' \| ' on ' Default: ' off '
XlimMode, YlimMode	Limit modes
Xlim, Ylim	Axes limits
IOGrouping	Grouping of input-output pairs Specified as one of the following strings: 'none ' \| 'inputs ' I output ' I 'all' Default: ' none '
InputLabels, OutputLabels	Input and output label styles

Option	Description
InputVisible, OutputVisible	Visibility of input and output channels

Option	Description
FreqUnits	Frequency units, specified as one of the following strings: - 'Hz' - 'rad/second ' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day' - 'cycles/week' - 'cycles/month' - 'cycles/year' Default: 'rad/s ' You can also specify 'auto' which uses frequency units rad/TimeUnit relative

Option	Description
	to system time units specified in the TimeUnit property. For multiple systems with different time units, the units of the first system are used.
TimeUnits	Time units, specified as one of the following strings: - 'nanoseconds' - 'microseconds' - 'milliseconds' - 'seconds' - 'minutes' - 'hours' - 'days' - 'weeks' - 'months' - 'years' Default: 'seconds ' You can also specify ' auto' which uses time units specified in the TimeUnit property of the input system. For multiple systems with different time units, the units of the first system is used.
ConfidenceRegionNumberSD	Number of standard deviations to use when displaying the confidence region characteristic for identified models (valid only iopzplot).

Examples

In this example, you enable the grid option before creating a plot.

```
P = pzoptions; % Create set of plot options P
P.Grid = 'on'; % Set the grid to on in options
h = rlocusplot(tf(1,[1,.2,1,0]),P);
```

The following root locus plot is created with the grid enabled.

- Figure 1
File Edit View Insert Tools Desktop Window Help
v

See Also

getoptions | iopzplot | pzplot | setoptions

pzplot

Pole-zero map of dynamic system model with plot customization options

Syntax

```
h = pzplot(sys)
pzplot(sys1,sys2,...)
pzplot(AX,...)
pzplot(..., plotoptions)
```


Description

$\mathrm{h}=\mathrm{pzplot}($ sys) computes the poles and (transmission) zeros of the "dynamic system model" sys and plots them in the complex plane. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help pzoptions
for a list of available plot options.
pzplot (sys1, sys2, ...) shows the poles and zeros of multiple models sys 1, sys $2, \ldots$ on a single plot. You can specify distinctive colors for each model, as in
pzplot(sys1,'r',sys2,'y',sys3,'g')
pzplot (AX, ...) plots into the axes with handle AX.
pzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
help pzoptions
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the s - or z-plane.

For arrays sys of dynamic system models, pzmap plots the poles and zeros of each model in the array on the same diagram.

Examples

Use the plot handle to change the color of the plot's title.
sys $=r s s(3,2,2)$;
h = pzplot(sys);
$\mathrm{p}=$ getoptions(h) ; \% Get options for plot.
p.Title.Color = [1,0,0]; \% Change title color in options.
setoptions(h,p); \%Apply options to plot.

More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
getoptions | pzmap | setoptions | iopzplot

rarmax

Estimate recursively parameters of ARMAX or ARMA models

Syntax

thm = rarmax (z, nn, adm, adg)
[thm, yhat, P, phi,psi] = rarmax (z,nn,adm,adg,th0,PO,phiO,psiO)

Description

The parameters of the ARMAX model structure

$$
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
$$

are estimated using a recursive prediction error method.
The input-output data is contained in \mathbf{z}, which is either an iddata object or a matrix \mathbf{z} $=\left[\begin{array}{ll}y & u\end{array}\right]$ where y and u are column vectors. $n n$ is given as
nn = [na nb nc nk]
where na, nb, and nc are the orders of the ARMAX model, and nk is the delay.
Specifically,

$$
\begin{aligned}
& n a: \quad A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a} \\
& n b: \quad B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
& n c: \quad \mathrm{C}(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c}
\end{aligned}
$$

See "What Are Polynomial Models?" for more information.
If z represents a time series y and $n n=[n a n c$], rarmax estimates the parameters of an ARMA model for y.

$$
A(q) y(t)=C(q) e(t)
$$

Only single-input, single-output models are handled by rarmax. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k; that is, they are based on the data in the rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order:

```
thm(k,:) = [a1,a2,...,ana,b1,..., bnb,c1,..., cnc]
```

yhat is the predicted value of the output, according to the current model; that is, row k of yhat contains the predicted value of $y(k)$ based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments $P 0$ and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is 10^{4} times the unit matrix. The arguments phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psiO is to use the outputs from a previous call to rarmax with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phiO and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want $n k=0$, shift the input sequence appropriately and use $\mathrm{nk}=1$.

Examples

Compute and plot, as functions of time, the four parameters in a second-order ARMA model of a time series given in the vector y . The forgetting factor algorithm with a forgetting factor of 0.98 is applied.

```
thm = rarmax(y,[2 2],'ff',0.98);
```

plot(thm)

More About

Algorithms

The general recursive prediction error algorithm (11.44), (11.47) through (11.49) of Ljung (1999) is implemented. See "Algorithms for Recursive Estimation" for more information.

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

See Also

nkshift | rarx | rbj | roe | rpem | rplr

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$ "

rarx

Estimate parameters of ARX or AR models recursively

Syntax

```
thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,PO,phi0)
```


Description

thm $=\operatorname{rarx}(\mathrm{z}, \mathrm{nn}, \operatorname{adm}, \operatorname{adg})$ estimates the parameters thm of single-output ARX model from input-output data z and model orders nn using the algorithm specified by adm and adg. If z is a time series y and $n n=n a$, rarx estimates the parameters of a single-output AR model.
[thm, yhat, $\mathrm{P}, \mathrm{phi}]=\operatorname{rarx}(z, n n, a d m, a d g, t h 0, P 0, p h i 0)$ estimates the parameters thm, the predicted output yhat, final values of the scaled covariance matrix of the parameters P, and final values of the data vector phi of single-output ARX model from input-output data z and model orders nn using the algorithm specified by adm and adg. If z is a time series y and $n n=n a$, rarx estimates the parameters of a singleoutput AR model.

Definitions

The general ARX model structure is:

$$
A(q) y(t)=B(q) u(t-n k)+e(t)
$$

The orders of the ARX model are:
$n a: A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a}$
$n b: \quad B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1}$

Models with several inputs are defined, as follows:
$A(q) y(t)=B_{1}(q) u_{1}\left(t-n k_{1}\right)+\ldots+B_{\mathrm{nu}} u_{\mathrm{nu}}\left(t-n k_{\mathrm{nu}}\right)+e(t)$

Input Arguments

z
Name of the matrix iddata object that represents the input-output data or a matrix $z=\left[\begin{array}{ll}y & u\end{array}\right]$, where y and u are column vectors.

For multiple-input models, the u matrix contains each input as a column vector:
$u=\left[\begin{array}{lll}u 1 & \ldots & u n u\end{array}\right]$
nn
For input-output models, specifies the structure of the ARX model as:
nn = [na nb nk]
where na and nb are the orders of the ARX model, and nk is the delay.
For multiple-input models, nb and nk are row vectors that define orders and delays for each input.

For time-series models, $n n=n a$, where na is the order of the AR model.

Note: The delay nk must be larger than 0 . If you want nk $=0$, shift the input sequence appropriately and use nk = 1 (see nkshift).
adm and adg
adm = 'ff' and adg = lam specify the forgetting factor algorithm with the forgetting factor $\lambda=1$ am. This algorithm is also known as recursive least squares (RLS). In this case, the matrix P has the following interpretation: $R_{2} / 2$ * P is approximately equal to the covariance matrix of the estimated parameters. R_{2} is the variance of the innovations (the true prediction errors $e(t)$).
adm = 'ug' and adg = gam specify the unnormalized gradient algorithm with gain gamma = gam. This algorithm is also known as the normalized least mean squares (LMS).
adm = 'ng' and adg = gam specify the normalized gradient or normalized least mean squares (NLMS) algorithm. In these cases, P is not applicable.
adm =' kf ' and adg $=\mathrm{R} 1$ specify the Kalman filter based algorithm with $R_{2}=1$ and $R_{1}=\mathrm{R} 1$. If the variance of the innovations $e(t)$ is not unity but R_{2}; then $R_{2}{ }^{*} \mathrm{P}$ is the covariance matrix of the parameter estimates, while $R_{1}=\mathrm{R} 1 / R_{2}$ is the covariance matrix of the parameter changes.
tho
Initial value of the parameters in a row vector, consistent with the rows of thm.
Default: All zeros.

PO

Initial values of the scaled covariance matrix of the parameters.
Default: 10^{4} times the identity matrix.
phio
The argument phiO contains the initial values of the data vector:
$\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]$
If $z=[y(1), u(1) ; \ldots ; y(N), u(N)], p h i 0=\varphi(1)$ and $p h i=\varphi(N)$. For online use of rarx, use phi0, th0, and P0 as the previous outputs phi, thm (last row), and P.

Default: All zeros.

Output Arguments

thm

Estimated parameters of the model. The kth row of thm contains the parameters associated with time k ; that is, the estimate parameters are based on the data in rows up to and including row k in z. Each row of thm contains the estimated parameters in the following order:
thm (k,: $)=[a 1, a 2, \ldots, a n a, b 1, \ldots, b n b]$
For a multiple-input model, the b are grouped by input. For example, the b parameters associated with the first input are listed first, and the b parameters associated with the second input are listed next.

yhat

Predicted value of the output, according to the current model; that is, row k of yhat contains the predicted value of $\mathrm{y}(\mathrm{k})$ based on all past data.

P

Final values of the scaled covariance matrix of the parameters.
phi
phi contains the final values of the data vector:
$\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]$

Examples

Adaptive noise canceling: The signal y contains a component that originates from a known signal r. Remove this component by recursively estimating the system that relates r to y using a sixth-order FIR model and the NLMS algorithm.

```
z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)
```

If this is an online application, you can plot the best estimate of the signal y - noise at the same time as the data y and u become available, use the following code:

```
phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);
axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end
```

This example uses a forgetting factor algorithm with a forgetting factor of 0.98 . readAD is a function that reads the value of an A / D converter at the indicated time instant.

More About

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

See Also

nkshift | rarmax | rbj | roe | rpem | rplr

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$

rb

Estimate recursively parameters of Box-Jenkins models

Syntax

thm $=r b j(z, n n, a d m, a d g)$
[thm, yhat, P, phi, psi] = rbj(z,nn,adm,adg,th0, PO, phi0, psi0)

Description

The parameters of the Box-Jenkins model structure

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
$$

are estimated using a recursive prediction error method.
The input-output data is contained in z, which is either an iddata object or a matrix z $=\left[\begin{array}{ll}y & u\end{array}\right]$ where y and u are column vectors. $n n$ is given as

```
nn = [nb nc nd nf nk]
```

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and nk is the delay. Specifically,

$$
\begin{aligned}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{aligned}
$$

See "What Are Polynomial Models?" for more information.
Only single-input, single-output models are handled by rbj. Use rpem for the multipleinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k ; that is, they are based on the data in the rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order.

```
thm(k,:) = [b1,\ldots.,bnb,c1,\ldots..,cnc,d1,\ldots.,dnd,f1,\ldots..,fnf]
```

yhat is the predicted value of the output, according to the current model; that is, row k of yhat contains the predicted value of $y(k)$ based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments $P 0$ and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is 10^{4} times the unit matrix. The arguments phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psi0 is to use the outputs from a previous call to rbj with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want nk $=0$, shift the input sequence appropriately and use $n k=1$.

More About

Algorithms

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

See Also

nkshift | rarmax | rarx | roe | rpem | rplr

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$ "

realdata

Determine whether iddata is based on real-valued signals

Syntax

```
realdata(data)
```


Description

realdata returns 1 if

- data contains only real-valued signals.
- data contains frequency-domain signals, obtained by Fourier transformation of realvalued signals.

Otherwise realdata returns 0 .
Notice the difference with isreal:

```
load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1
```


repsys

Replicate and tile models

Syntax

```
rsys = repsys(sys,[M N])
rsys = repsys(sys,N)
rsys = repsys(sys,[M N S1,...,Sk])
```


Description

rsys = repsys(sys,[M N]) replicates the model sys into an M-by-N tiling pattern. The resulting model rsys has size (sys,1)*M outputs and size (sys, 2) *N inputs.
rsys $=$ repsys(sys, N) creates an N -by- N tiling.
rsys $=$ repsys(sys,[M N S1,..., Sk]) replicates and tiles sys along both I/O and array dimensions to produce a model array. The indices S specify the array dimensions. The size of the array is [size(sys, 1) *M, size (sys, 2) *N, size(sys,3)*S1, ...].

Input Arguments

sys

Model to replicate.

M

Number of replications of sys along the output dimension.

N

Number of replications of sys along the input dimension.

S

Numbers of replications of sys along array dimensions.

Output Arguments

rsys

Model having size(sys, 1)*M outputs and size(sys,2) *N inputs.
If you provide array dimensions $\mathrm{S} 1, \ldots, \mathrm{Sk}$, rsys is an array of dynamic systems which each have size (sys, 1$) * \mathrm{M}$ outputs and size (sys, 2$) * N$ inputs. The size of rsys is [size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].

Examples

Replicate a SISO transfer function to create a MIMO transfer function that has three inputs and two outputs.

```
sys = tf(2,[1 3]);
rsys = repsys(sys,[2 3]);
```

The preceding commands produce the same result as:

```
sys = tf(2,[\begin{array}{ll}{1}&{3}\end{array});
rsys = [sys sys sys; sys sys sys];
```

Replicate a SISO transfer function into a 3-by-4 array of two-input, one-output transfer functions.

```
sys = tf(2,[1 3]);
rsys = repsys(sys, [1 2 3 4]);
```

To check the size of rsys, enter:

```
size(rsys)
```

This command produces the result:
3×4 array of transfer functions.
Each model has 1 outputs and 2 inputs.

More About

Tips

rsys $=$ repsys(sys,N) produces the same result as rsys = repsys(sys,[N N]). To produce a diagonal tiling, use rsys = sys*eye(N).

See Also

append

resample

Resample time-domain data by decimation or interpolation (requires Signal Processing Toolbox software)

Syntax

resample(data, P, Q)
resample(data, P, Q,order)

Description

resample(data, P, Q) resamples data such that the data is interpolated by a factor P and then decimated by a factor Q. resample $(z, 1, Q)$ results in decimation by a factor Q.
resample(data, P, Q, order) filters the data by applying a filter of specified order before interpolation and decimation.

Input Arguments

data
Name of time-domain iddata object. Can be input-output or time-series data.
Data must be sampled at equal time intervals.
P, Q
Integers that specify the resampling factor, such that the new sampling interval is Q/ P times the original one.
$(Q / P)>1$ results in decimation and $(Q / P)<1$ results in interpolation.
order
Order of the filters applied before interpolation and decimation.
Default: 10

Examples

In this example, you increase the sampling rate by a factor of 1.5 and compare the resampled and the original data signals.

```
u = idinput([20 1 2],'sine',[],[],[5 10 1]);
u = iddata([],u,1);
plot(u)
ur = resample(u,3,2);
plot(u,ur)
```


More About

Algorithms

If you have installed the Signal Processing Toolbox software, resample calls the Signal Processing Toolbox resample function. The algorithm takes into account the intersample characteristics of the input signal, as described by data. InterSample.

See Also
idresamp

reshape

Change shape of model array

Syntax

```
sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])
```


Description

sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1 s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by-...by-sk model array. With either syntax, there must be s1*s2*...*sk models in sys to begin with.

Examples

Change the shape of a model array from 2 x 3 to 6 x 1 .

```
% Create a 2x3 model array.
sys = rss(4,1,1,2,3);
% Confirm the size of the array.
size(sys)
```

This input produces the following output:

```
2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.
```

Change the shape of the array.

```
sys1 = reshape(sys,6,1);
```

size(sys1)

This input produces the following output:
6×1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

See Also
 ndims | size

resid

Compute and test model residuals (prediction errors)

Syntax

```
resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data)
```


Description

resid(m, data) plots the residuals associated with an identified model. data contains the output-input data as an iddata object. Both time-domain and frequency-domain data are supported. data can also be an idfrd object. m is any linear or nonlinear identified model.
resid(m, data, Type) specifies the type of plot. The plot can be one of three kinds depending on the argument Type:

- Type $=$ 'Corr' (only available for time-domain data) - The autocorrelation function of e and the cross-correlation between e and the input(s) u are computed and displayed. The 99% confidence intervals for these values are also computed and shown as a yellow region. The computation of the confidence region is done assuming e to be white and independent of u. The functions are displayed up to lag M, which is 25 by default.
- Type = 'ir' - The impulse response (up to lag M, which is 25 by default) from the input to the residuals is plotted with a 99% confidence region around zero marked as a yellow area. Negative lags up to M/4 are also included to investigate feedback effects. The result is the same as impulse (e, 'sd', $2.58, M$).
- Type $=$ ' $f r$ ' - The frequency response from the input to the residuals (based on a high-order FIR model) is shown as a Bode plot. A 99\% confidence region around zero is also marked as a yellow area.

The default for time-domain data is Type $=$ 'Corr'. For frequency-domain data, the default is Type = 'fr'.
resid(m, data, Type, M) specifies the number of positive lags. The correlation functions for Type $=$ 'Corr' are given up to lag 25 , which can be changed to M . If M is specified, this will also be the number of positive lags used for the impulse response in the 'ir' case. Specification of lags is not meaningful when Type = 'fr'.
$e=r e s i d(m, d a t a)$ returns the residuals (prediction errors) associated with the model and the data. e is an iddata object with the residuals as outputs and the input in data as inputs. That means that e can be directly used to build model error models, that is, models that describe the dynamics from the input to the residuals (which should be negligible if m is a good description of the system). This is done as in the command pe with a default choice of init.

Examples

Here are some typical model validation commands.

```
e = resid(m,data);
plot(e)
compare(data,m);
```

To compute a model error model, that is, a model from the input to the residuals to see if any essential unmodeled dynamics are left, do the following:

```
e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,'fill')
```


References

Ljung (1999), Section 16.6.

```
See Also
compare | predict | sim | simsd
```


retrend

Add offsets or trends to data signals

Syntax

```
data = retrend(data_d,T)
```


Description

data $=$ retrend (data_d,T) returns a data object data by adding the trend information T to each signal in data_d. data_d is a time-domain iddata object. T is an TrendInfo object.

Examples

Subtract means from input-output signals, estimate a linear model, and retrend the simulated output:

```
% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Remove the mean from the data
[data_d,T] = detrend(data,0)
% Estimate a linear ARX model
m = arx(data_d,[2 2 1])
% Simulate the model output
% with zero initial states
y_sim = sim(m,data_d(:,[],:));
% Retrend the simulated model output
y_tot = retrend(y_sim,T);
```


More About

- "Handling Offsets and Trends in Data"

See Also
getTrend | detrend | TrendInfo

roe

Estimate recursively output-error models (IIR-filters)

Syntax

thm = roe(z, nn, adm, adg)
[thm, yhat, P, phi, psi] = roe(z,nn,adm,adg,th0, PO, phi0,psiO)

Description

The parameters of the output-error model structure

$$
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+e(t)
$$

are estimated using a recursive prediction error method.
The input-output data are contained in z, which is either an iddata object or a matrix z $=\left[\begin{array}{ll}y & u\end{array}\right]$ where y and u are column vectors. nn is given as
$n n=[n b n f n k]$
where nb and nf are the orders of the output-error model, and nk is the delay. Specifically,

$$
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
$$

See "What Are Polynomial Models?" for more information.
Only single-input, single-output models are handled by roe. Use rpem for the multipleinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k; that is, they are based on the data in the rows up to and including row k in z .

Each row of thm contains the estimated parameters in the following order.

```
thm(k,:) = [b1,...,bnb,f1,...,fnf]
```

yhat is the predicted value of the output, according to the current model; that is, row k of yhat contains the predicted value of $y(k)$ based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments $P 0$ and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is 10^{4} times the unit matrix. The arguments phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psiO is to use the outputs from a previous call to roe with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want $n k=0$, shift the input sequence appropriately and use $n k=1$.

More About

Algorithms

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

See Also

nkshift | rarx | rbj | rbj | rpem | rplr

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM } " ~}$

rpem

Estimate general input-output models using recursive prediction-error minimization method

Syntax

```
thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,PO,phiO,psiO)
```


Description

The parameters of the general linear model structure

$$
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
$$

are estimated using a recursive prediction error method.
The input-output data is contained in \mathbf{z}, which is either an iddata object or a matrix \mathbf{z} $=\left[\begin{array}{ll}y & u\end{array}\right]$ where y and u are column vectors. (In the multiple-input case, u contains one column for each input.) $n n$ is given as
nn = [na nb nc nd nf nk]
where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For multiple-input systems, nb, nf, and nk are row vectors giving the orders and delays of each input. See "What Are Polynomial Models?" for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k; that is, they are based on the data in the rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order.

```
thm(k,:) = [a1,a2,...,ana,b1,\ldots, ..,bnb,\ldots
    c1,...,cnc,d1,...,dnd,f1,...,fnf]
```

For multiple-input systems, the B part in the above expression is repeated for each input before the C part begins, and the F part is also repeated for each input. This is the same ordering as in m. par.
yhat is the predicted value of the output, according to the current model; that is, row k of yhat contains the predicted value of $y(k)$ based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is 10^{4} times the unit matrix. The arguments phi0, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psiO is to use the outputs from a previous call to rpem with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phiO and psiO are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want nk $=0$, shift the input sequence appropriately and use $\mathrm{nk}=1$.

More About

Algorithms

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, BoxJenkins, and output-error models, it is more efficient to use rarx, rarmax, rbj, and roe.

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

See Also

nkshift | rarmax | rarx | rbj | roe | rplr

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$ "

rplr

Estimate general input-output models using recursive pseudolinear regression method

Syntax

```
thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,PO,phi0)
```


Description

This is a direct alternative to rpem and has essentially the same syntax. See rpem for an explanation of the input and output arguments.
rplr differs from rpem in that it uses another gradient approximation. See Section 11.5 in Ljung (1999). Several of the special cases are well-known algorithms.

When applied to ARMAX models, (nn = [na nb nc 00 nk]), rplr gives the extended least squares (ELS) method. When applied to the output-error structure (nn $=[0 \mathrm{nb} 00 \mathrm{nf} \mathrm{nk}]$), the method is known as HARF in the adm = ' ff ' case and SHARF in the adm $=$ ' ng ' case.
rplr can also be applied to the time-series case in which an ARMA model is estimated with

```
z = y
nn = [na nc]
```

You can thus use rplr as an alternative to rarmax for this case.

More About

- "What Is Recursive Estimation?"
- "Data Supported for Recursive Estimation"
- "Algorithms for Recursive Estimation"

References

For more information about HARF and SHARF, see Chapter 11 in Ljung (1999).

```
See Also
nkshift | rarmax | rarx | rbj | roe | rpem
```


Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$

rsample

Random sampling of linear identified systems

Syntax

```
sys_array = rsample(sys,N)
sys_array = rsample(sys,N,sd)
```


Description

sys_array $=$ rsample(sys, N) creates N random samples of the identified linear system, sys. sys_array contains systems with the same structure as sys, whose parameters are perturbed about their nominal values, based on the parameter covariance.
sys_array = rsample(sys, N, sd) specifies the standard deviation level, sd, for perturbing the parameters of sys.

Input Arguments

sys
Identifiable system.
N
Number of samples to be generated.
Default: 10
sd
Standard deviation level for perturbing the identifiable parameters of sys.
Default: 1

Output Arguments

```
sys_array
```

Array of random samples of sys.
If sys is an array of models, then the size of sys_array is equal to [size(sys) N]. There are N randomized samples for each model in sys.

The parameters of the samples in sys_array vary from the original identifiable model within 1 standard deviation of their nominal values.

Examples

Random Sample of an Estimated Model

Estimate a third-order, discrete-time, state-space model. Analyze the uncertainty in its time (step) and frequency (Bode) responses.

Estimate the model.

```
load iddata2 z2;
sys = n4sid(z2,3);
```

Randomly sample the estimated model.

```
N = 20;
```

sys_array = rsample(sys,N);

Analyze the model uncertainty.

```
opt = bodeoptions; opt.PhaseMatching = 'on';
figure, bodeplot(sys_array,'g',sys,'r.',opt)
figure, stepplot(sys_array,'g',sys,'r.-')
```


Specify Standard Deviation Level for Parameter Perturbation

Estimate the model.

```
load iddata2 z2;
sys = n4sid(z2,3);
```

Randomly sample the estimated model. Specify the standard deviation level for perturbing the model parameters.
$\mathrm{N}=20 ;$
sd = 2;
sys_array = rsample(sys,N,sd);
Analyze the model uncertainty.

```
figure;
bode(sys_array);
```


Compare Frequency Response Confidence Regions for Sampled ARMAX Model

Estimate an ARMAX model. Compare the frequency response confidence region corresponding to 2 standard deviations (asymptotic estimate) to values obtained by random sampling for the same value of standard deviation.

Estimate ARMAX model.

```
load iddata1 z1
sys = armax(z1,[2 2 2 1]);
```

Randomly sample the ARMAX model. Perturb the model parameters up to 2 standard deviations.
$\mathrm{N}=20 ;$
sd = 2;
sys_array = rsample(sys,N,sd);
Compare the frequency response confidence region corresponding to 2 standard deviations with the model array response.

```
opt = bodeoptions; opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 2;
bodeplot(sys_array,'g',sys,'r',opt)
```

To view the confidence region, right click the plot, and choose Characteristics > Confidence Region.

More About

Tips

- For systems with large parameter uncertainties, the randomized systems may contain unstable elements. These unstable elements may make it difficult to analyze the properties of the identified system. Execution of analysis commands, such as step, bode, sim, etc., on such systems can produce unreliable results. Instead, use a dedicated Monte-Carlo analysis command, such as simsd.

See Also
bode | init | iopzmap | noise2meas | noisecnv | simsd | step | translatecov

saturation

Class representing saturation nonlinearity estimator for Hammerstein-Wiener models

Syntax

```
s=saturation(LinearInterval,L)
```


Description

saturation is an object that stores the saturation nonlinearity estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
$\mathrm{s}=$ saturation(LinearInterval, L) creates a saturation nonlinearity estimator object, initialized with the linear interval L.

Use evaluate (s, x) to compute the value of the function defined by the saturation object s at x.

saturation Properties

You can specify the property value as an argument in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List LinearInterval property value
get(s)
s.LinearInterval
```

You can also use the set function to set the value of particular properties. For example:
set(s, 'LinearInterval', [-1.5 1.5])
The first argument to set must be the name of a MATLAB variable.

Property Name	Description
Linear Interval	$1-b y-2$ row vector that specifies the initial interval of the saturation. Default=[NaN NaN]. For example: saturation('LinearInterval',$\left.\left[\begin{array}{lll}-1.5 & 1.5\end{array}\right]\right)$

Examples

Use saturation to specify the saturation nonlinearity estimator in HammersteinWiener models. For example:

```
m=nlhw(Data,Orders,saturation([-1 1]),[]);
```

The saturation nonlinearity is initialized at the interval [-1 1 1]. The interval values are adjusted to the estimation data by nlhw.

More About

Tips

Use saturation to define a nonlinear function $y=F(x)$, where F is a function of x and has the following characteristics:

$$
\begin{array}{ll}
a \leq x<b & F(x)=x \\
a>x & F(x)=a \\
b \leq x & F(x)=b
\end{array}
$$

y and x are scalars.

See Also

nlhw

segment

Segment data and estimate models for each segment

Syntax

```
segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,PO,ll,mu)
```


Description

segment builds models of AR, ARX, or ARMAX/ARMA type,

$$
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
$$

assuming that the model parameters are piecewise constant over time. It results in a model that has split the data record into segments over which the model remains constant. The function models signals and systems that might undergo abrupt changes.

The input-output data is contained in z, which is either an iddata object or a matrix z $=\left[\begin{array}{ll}y & u\end{array}\right]$ where y and u are column vectors. If the system has several inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

```
nn = [na nb nc nk]
```

where na, nb, and nc are the orders of the corresponding polynomials. See "What Are Polynomial Models?". Moreover, nk is the delay. If the model has several inputs, nb and nk are row vectors, giving the orders and delays for each input.

For an ARX model (nc = 0) enter
nn = [na nb nk]
For an ARMA model of a time series
$z=y$
nn $=$ [na nc]
and for an AR model
nn = na
The output argument segm is a matrix, where the kth row contains the parameters corresponding to time k . This is analogous to the output argument thm in rarx and rarmax. The output argument thm of segment contains the corresponding model parameters that have not yet been segmented. That is, they are not piecewise constant, and therefore correspond to the outputs of the functions rarmax and rarx. In fact, segment is an alternative to these two algorithms, and has a better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction errors of the segmented model. It is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations $e(t)$ in the model. The default value of R2, R2 = [], is that it is estimated. Then the output argument R2e is a vector whose kth element contains the estimate of R2 at time k.

The argument q is the probability that the model exhibits an abrupt change at any given time. The default value is 0.01 .

R1 is the assumed covariance matrix of the parameter jumps when they occur. The default value is the identity matrix with dimension equal to the number of estimated parameters.
M is the number of parallel models used in the algorithm (see below). Its default value is 5.
th0 is the initial value of the parameters. Its default is zero. P0 is the initial covariance matrix of the parameters. The default is 10 times the identity matrix.
$l l$ is the guaranteed life of each of the models. That is, any created candidate model is not abolished until after at least ll time steps. The default is $l l=1 . M u$ is a forgetting parameter that is used in the scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust to have a reasonable guess of R2 than to estimate it. Typically, you need to try different values of R2 and evaluate the results. (See the example below.) sqrt (R2) corresponds to a change in the value $y(t)$ that is normal, giving no indication that the system or the input might have changed.

Examples

Check how the algorithm segments a sinusoid into segments of constant levels. Then use a very simple model $y(t)=b_{1} * 1$, where 1 is a fake input and b_{1} describes the piecewise constant level of the signal $y(t)$ (which is simulated as a sinusoid).

```
y = sin([1:50]/3)';
thm = segment([y,ones(length(y),1)],[0 1 1],0.1);
plot([thm,y])
```

By trying various values of R2 (0.1 in the above example), more levels are created as R2 decreases.

More About

Algorithms

The algorithm is based on M parallel models, each recursively estimated by an algorithm of Kalman filter type. Each model is updated independently, and its posterior probability is computed. The time-varying estimate thm is formed by weighting together the M different models with weights equal to their posterior probability. At each time step the model (among those that have lived at least 11 samples) that has the lowest posterior probability is abolished. A new model is started, assuming that the system parameters have changed, with probability q , a random jump from the most likely among the models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior probability is tracked back and the time instances where it jumped are marked. This defines the different segments of the data. (If no models had been abolished in the algorithm, this would have been the maximum likelihood estimates of the jump instances.) The segmented model segm is then formed by smoothing the parameter estimate, assuming that the jump instances are correct. In other words, the last estimate over a segment is chosen to represent the whole segment.

- "Data Segmentation"

Related Examples

- "Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox ${ }^{\text {TM }}$

selstruc

Select model order for single-output ARX models

Syntax

```
nn = selstruc(v)
[nn,vmod] = selstruc(v,c)
```


Description

Note: Use selstruc for single-output systems only. selstruc supports both singleinput and multiple-input systems.
selstruc is a function to help choose a model structure (order) from the information contained in the matrix \vee obtained as the output from arxstruc or ivstruc.

The default value of c is ' plot '. The plot shows the percentage of the output variance that is not explained by the model as a function of the number of parameters used. Each value shows the best fit for that number of parameters. By clicking in the plot you can examine which orders are of interest. When you click Select, the variable nn is exported to the workspace as the optimal model structure for your choice of number of parameters. Several choices can be made.
c = 'aic' gives no plots, but returns in $n n$ the structure that minimizes

$$
\begin{aligned}
V_{\bmod } & =\log \left(V\left(1+\frac{2 d}{N}\right)\right) \\
& =\log (V)+\frac{2 d}{N}, N \gg d
\end{aligned}
$$

where V is the loss function, d is the total number of parameters in the structure in question, and N is the number of data points used for the estimation. $\log (V)+\frac{2 d}{N}$ is the Akaike's Information Criterion (AIC). See aic for more details.
$c=$ 'mdl' returns in $n n$ the structure that minimizes Rissanen's Minimum Description Length (MDL) criterion.

$$
V_{\mathrm{mod}}=V\left(1+\frac{d \log (N)}{N}\right)
$$

When c equals a numerical value, the structure that minimizes $V_{\bmod }=V\left(1+\frac{c d}{N}\right)$
is selected.
The output argument vmod has the same format as v , but it contains the logarithms of the accordingly modified criteria.

Examples

```
load iddata5;
data = z5;
V = arxstruc(data(1:200),data(201:400),...
    struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)
```


set

Set or modify model properties

Syntax

```
set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
sysnew = set(___)
set(sys,'Property')
```


Description

set is used to set or modify the properties of a dynamic system model. Like its Handle Graphics ${ }^{\circledR}$ counterpart, set uses property name/property value pairs to update property values.
set (sys,'Property', Value) assigns the value Value to the property of the model sys specified by the string 'Property'. This string can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). The specified property must be compatible with the model type. For example, if sys is a transfer function, Variable is a valid property but StateName is not. For a complete list of available system properties for any linear model type, see the reference page for that model type. This syntax is equivalent to sys.Property = Value.
set(sys,'Property1', Value1, 'Property2', Value2, ...) sets multiple property values with a single statement. Each property name/property value pair updates one particular property.
sysnew = set (\qquad) returns the modified dynamic system model, and can be used with any of the previous syntaxes.
set(sys,'Property') displays help for the property specified by 'Property'.

Examples

Consider the SISO state-space model created by

```
sys = ss(1,2,3,4);
```

You can add an input delay of 0.1 second, label the input as torque, reset the D matrix to zero, and store its DC gain in the 'Userdata' property by

```
set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))
```

Note that set does not require any output argument. Check the result with get by typing

```
get(sys)
```

 a: 1
 b: 2
 c: 3
 d: 0
 e: []
 StateName: \{''\}
 InternalDelay: [0x1 double]
 Ts: 0
 InputDelay: 0.1
 OutputDelay: 0
 InputName: \{'torque'\}
 OutputName: \{''\}
 InputGroup: [1x1 struct]
 OutputGroup: [1x1 struct]
 Name: ' 1
 Notes: \{\}
 UserData: -2

More About

Tips

For discrete-time transfer functions, the convention used to represent the numerator and denominator depends on the choice of variable (see tf for details). Like tf, the syntax for set changes to remain consistent with the choice of variable. For example, if the Variable property is set to ' z ' (the default),
set(h,'num',[1 2],'den',[$\left.\begin{array}{lll}1 & 3 & 4\end{array}\right]$
produces the transfer function

$$
h(z)=\frac{z+2}{z^{2}+3 z+4}
$$

However, if you change the Variable to ' $z^{\wedge}-1$ ' by set(h,'Variable','z^-1'),
the same command

now interprets the row vectors [$\left.\begin{array}{ll}1 & 2\end{array}\right]$ and $\left[\begin{array}{lll}1 & 3 & 4\end{array}\right]$ as the polynomials $1+2 z^{-1}$ and $1+3 z^{-1}+4 z^{-2}$ and produces:

$$
\bar{h}\left(z^{-1}\right)=\frac{1+2 z^{-1}}{1+3 z^{-1}+4 z^{-2}}=z h(z)
$$

Note Because the resulting transfer functions are different, make sure to use the convention consistent with your choice of variable.

See Also

idfrd | idtf | idproc | idnlarx | idnlgrey | get | frd | ss | tf | zpk | idss | idgrey | idpoly | idnlhw

setcov

Set parameter covariance data in identified model

Syntax

sys $=$ setcov(sys0,cov)

Description

sys $=$ setcov(sys0, cov) modifies the parameter covariance of sys0 to the value specified by cov.

The model parameter covariance is calculated and stored automatically when a model is estimated. Therefore, you do not need to set the parameter covariance explicitly for estimated models. Use this function for analysis, such as to study how the parameter covariance affects the response of a model obtained by explicit construction.

Input Arguments

sys0
Identified model.

cov

Parameter covariance matrix.
cov is one of the following:

- an $n p$-by- $n p$ semi-positive definite symmetric matrix, where $n p$ is equal to the number of parameters of sys0.
- a structure with the following fields that describe the parameter covariance in a factored form:
- R - usually the Cholesky factor of inverse of covariance.
- T-transformation matrix.
- Free - logical vector of length $n p$ indicating if a parameter is free. Here $n p$ is equal to the number of parameters of sys0.
$\operatorname{cov}($ Free, Free $)=T * i n v\left(R^{\prime *} R\right) * T^{\prime}$.

Default:

Output Arguments

sys

Identified model.
The values of all the properties of sys are the same as those in sys 0 , except for the parameter covariance values which are modified as specified by cov.

Examples

Raw Covariance

Set raw covariance data for an identified model.
Create a covariance matrix for the transfer function

$$
\text { sys } 0=\frac{4}{s^{2}+2 s+1}
$$

For this example, set the covariance values for only the denominator parameters.

```
sys0 = idtf(4,[1 2 1]);
np = nparams(sys0);
cov = zeros(np);
den_index = 2:3;
cov(den_index,den_index)=diag([0.04 0.001]);
```

sys0 contains np model parameters.
$\operatorname{cov}\left(d e n _i n d e x, d e n _i n d e x\right)=\operatorname{diag}([0.040 .001])$ creates a covariance matrix, cov, with nonzero entries for the denominator parameters.

Set the covariance for sys0.
sys $=$ setcov(sys0,cov);

See Also
 getcov | rsample | setpvec | sim

setinit

Set initial states of idnlgrey model object

Syntax

```
model = setinit(model,Property,Values)
```


Description

model $=$ setinit(model, Property, Values) sets the values of the Property field of the InitialStates model property. Property can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Input Arguments

model

Name of the idnlgrey model object.
Property
Name of the InitialStates model property field, such as 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Values

Values of the specified property Property. Values are an $N x$-by- 1 cell array of values, where $N x$ is the number of states.

See Also
getinit | getpar | idnlgrey | setpar

setoptions

Set plot options for response plot

Syntax

```
setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)
```


Description

setoptions(h, PlotOpts) sets preferences for response plot using the plot handle. h is the plot handle, PlotOpts is a plot options handle containing information about plot options.

There are two ways to create a plot options handle:

- Use getoptions, which accepts a plot handle and returns a plot options handle.
$\mathrm{p}=$ getoptions(h)
- Create a default plot options handle using one of the following commands:
- bodeoptions - Bode plots
- hsvoptions - Hankel singular values plots
- nicholsoptions - Nichols plots
- nyquistoptions - Nyquist plots
- pzoptions - Pole/zero plots
- sigmaoptions - Sigma plots
- timeoptions - Time plots (step, initial, impulse, etc.)

For example,
p = bodeoptions
returns a plot options handle for Bode plots.
setoptions(h, 'Property1', 'value1', ...) assigns values to property pairs instead of using PlotOpts. To find out what properties and values are available for a particular plot, type help <function>options. For example, for Bode plots type
help bodeoptions
For a list of the properties and values available for each plot type, see "Properties and Values Reference".
setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot properties as defined in @PlotOptions, and then overrides any properties governed by the specified property/value pairs.

Examples

To change frequency units, first create a Bode plot.

```
sys=tf(1,[\begin{array}{ll}{1}&{1]);}\end{array}]
h=bodeplot(sys) % Create a Bode plot with plot handle h.
```


Now, change the frequency units from $\mathrm{rad} / \mathrm{s}$ to Hz .

```
p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.
setoptions(h,p); % Apply plot options to the Bode plot and
    % render.
```


To change the frequency units using property/value pairs, use this code.

```
sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');
```

The result is the same as the first example.

See Also

getoptions

idParametric/setpar

Set attributes such as values and bounds of linear model parameters

Syntax

```
sys1 = setpar(sys,'value',value)
sys1 = setpar(sys,'free',free)
sys1 = setpar(sys,'bounds',bounds)
sys1 = setpar(sys,'label',label)
```


Description

sys1 = setpar(sys, 'value', value) sets the parameter values of the model sys. For model arrays, use setpar separately on each model in the array.
sys1 = setpar(sys,'free',free) sets the free or fixed status of the parameters.
sys1 = setpar(sys,'bounds', bounds) sets the minimum and maximum bounds on the parameters.
sys1 = setpar(sys,'label', label) sets the labels for the parameters.

Examples

Assign Model Parameter Values

Set model parameter values of an ARMAX model.
Estimate an ARMAX model.

```
load iddata8;
init_data = z8(1:100);
na=1;
nb=[[1 1 1];
nc=1;
nk=[[0 0 0}|]
```

```
sys = armax(init_data,[na nb nc nk]);
```

Set the parameter values.

```
sys = setpar(sys,'value',[0.5 0.1 0.3 0.02 0.5]');
```

To view the values, type val = getpar(sys,'value').

Fix or Free Model Parameters

Specify whether to fix or free a process model parameters for estimation.
Construct a process model.

```
m = idproc('P2DUZI');
m.Kp = 1;
m.Tw = 100;
m.Zeta = .3;
m.Tz = 10;
m.Td = 0.4;
```

Set the free status of the parameters.

Here, you set Tz to be a fixed parameter.
To check the free status of Tz, type m. Structure.Tz.

Set Minimum and Maximum Bounds on Parameters

Specify minimum and maximum bounds on parameters of an ARMAX model.
Estimate an ARMAX model.

```
load iddata8;
init_data = z8(1:100);
na=1;
nb=[[1 1 1];
nc=1;
nk=[\begin{array}{lll}{0}&{0}&{0}\end{array}];
sys = armax(init_data,[na nb nc nk]);
```

Set the minimum and maximum bounds for the parameters.

```
sys=setpar(sys,'bounds',[0 1; 1 1.5; 0 2; 0.5 1; 0 1]);
```


Assign Default Labels to Parameters

Set the parameter labels to default labels for an ARMAX model.
Estimate an ARMAX model.

```
load iddata8;
init_data = z8(1:100);
na=1;
nb=[\begin{array}{lll}{1}&{1}&{1}\end{array}];
nc=1;
nk=[0 0 0];
sys = armax(init_data,[na nb nc nk]);
```

Assign default labels to model parameters.

```
sys = setpar(sys,'label','default');
```

To view the labels, type getpar(sys, 'label').

Input Arguments

sys - Identified linear model

idss | idproc | idgrey | idtf | idpoly
Identified linear model, specified as an idss, idproc, idgrey, idtf, or idpoly model object.

value - Parameter values

vector of doubles
Parameter values, specified as a double vector of length nparams(sys).

free - Free or fixed status of parameters

vector of logical values
Free or fixed status of parameters, specified as a logical vector of length nparams (sys).

bounds - Minimum and maximum bounds on parameters

matrix of doubles

Minimum and maximum bounds on parameters, specified as a double matrix of size nparams (sys)-by- 2 . The first column specifies the minimum bound and the second column the maximum bound.

label - Parameter labels
 cell array of strings | 'default'

Parameter labels, specified as a cell array of strings. The cell array is of length nparams(sys).

Use 'default' to assign default labels, a 1 , $\mathrm{a} 2 \ldots, \mathrm{~b} 1, \mathrm{~b} 2, \ldots$, to the parameters.

Output Arguments

sys1 - Model with specified values of parameter attributes

idss | idproc | idgrey | idtf | idpoly
Model with specified values of parameter attributes. The model sys you specify as the input to setpar gets updated with the specified parameter attribute values.

See Also
getpar | setcov | setpvec

setpar

Set initial parameter values of idnlgrey model object

Syntax

setpar(model, property, values)

Input Arguments

model
Name of the idnlgrey model object.
property
Name of the Parameters model property field, such as 'Name', 'Unit', 'Value', 'Minimum', or 'Maximum'.

Default: 'Value'.
values
Values of the specified property Property. values are an Np-by-1 cell array of values, where Np is the number of parameters.

Description

setpar(model, property, values) sets the model parameter values in the property field of the Parameters model property. property can be 'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

```
See Also
getinit | getpar | idnlgrey | setinit
```


setpname

Set mnemonic parameter names for linear black-box model structures

Note: setpname will be removed in a future release. Use the Structure. Info field of a linear model instead.

Syntax

```
model = setpname(model)
```


Description

model is an idmodel object of idarx, idpoly, idproc, or idss type. The returned model has the 'PName ' property set to a cell array of strings that correspond to the symbols used in this manual to describe the parameters.

For single-input idpoly models, the parameters are called 'a1', 'a2', ...,'fn'.
For multiple-input idpoly models, the b and f parameters have the output/input channel number in parentheses, as in 'b1 $(1,2)$ ', 'f3(1,2)', etc.

For idarx models, the parameter names are as in ' $-\mathrm{A}(\mathrm{ky}, \mathrm{ku})$ ' for the negative value of the $k y$ - $k u$ entry of the matrix in $A(q)$ polynomial of the multiple-output ARX equation, and similarly for the B parameters.

For idss models, the parameters are named for the matrix entries they represent, such as ' $A(4,5)^{\prime}$, ' $K(2,3)$ ', etc.

For idproc models, the parameter names are as described in idproc.
This function is particularly useful when certain parameters are to be fixed.

setPolyFormat

Specify format for B and F polynomials of multi-input polynomial model for backward compatibility

Syntax

```
model= setPolyFormat(model, 'cell')
model= setPolyFormat(model, 'double')
```


Description

model= setPolyFormat (model, 'cell') converts the B and F polynomials of a multi-input polynomial model, model, from double matrices to cell arrays. Each cell array has Nu-elements of double vectors, where Nu is the number of inputs.
model= setPolyFormat(model, 'double') allows you to continue using double matrices for the B and F polynomials. The model displays a message that it is in backward compatibility mode.

Examples

Convert the B and F polynomials of an estimated multi-input ARX model to cell arrays:
1 Estimate a 3-input ARX model.
\% Load estimation data.
load iddata8
\% Estimate model.
$\mathrm{m}=\operatorname{arx}\left(\mathrm{z8},[3 \mathrm{C} 2 \mathrm{2} 1]\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right)$;
The software computes the B and F polynomials and stores their values as double matrices in the b and f properties. Operations on the B and F polynomials, such as m.b, produce an incompatibility warning.

2 Convert the B and F polynomials to cell arrays.

```
m=setPolyFormat(m,'cell');
```

To verify that the B and F polynomials are cell arrays, type class (m.b), which returns:
ans $=$
cell
3 Extract pole and zero information from the model using cell array syntax.

```
Poles1 = roots(m.f{1});
Zeros1 = roots(m.b{1});
```

Continue using double matrices for B and F polynomials of an estimated multi-input ARX model:

1 Estimate a 3-input ARX model.

```
% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [11 1 1]]);
```

The software computes the B and F polynomials, and stores their values in double matrices in the b and f properties. Operations on the B and F polynomials, such as $\mathrm{m} . \mathrm{b}$, produce an incompatibility warning.

2 Designate the model to continue using double matrices for the B and F polynomials for backward compatibility.

```
m=setPolyFormat(m,'double')
```

The following message at the MATLAB prompt indicates that the model is backward compatible:

```
(model configured to operate in backward compatibility mode)
```

3 Extract pole and zero information from the model using matrix syntax.

```
Poles1 = roots(m.f(1,:))
Zeros1 = roots(m.b(1,:))
```


More About

Tips

- The B and F polynomials, represented by band f properties of idpoly object, are currently double matrices. For multi-input polynomial models, these polynomials will be cell arrays in a future version. Using setPolyFormat allows you to either change to using cell arrays immediately or continue using double arrays without errors in a future version.
- After using model = setPolyFormat (model, 'cell'), update your code to use cell array syntax for operations on the b and f properties.
- After using model = setPolyFormat (model, 'double'), you can continue using double matrix syntax for operations on the b and f properties.
- setPolyFormat has no effect on single-input idpoly models, where the b and f properties continue to be represented by double row vectors.
- "Extracting Numerical Model Data"

See Also

idpoly | get | set | polydata | tfdata

setpvec

Modify value of model parameters

Syntax

```
sys = setpvec(sys0,par)
sys = setpvec(sys0,par,'free')
```


Description

sys = setpvec (sys0, par) modifies the value of the parameters of the identified model sys0 to the value specified by par.
par must be of length nparams(sys0). nparams (sys0) returns a count of all the parameters of sys0.
sys $=$ setpvec(sys0, par,'free') modifies the value of all the free estimation parameters of sys0 to the value specified by par.
par must be of length nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the free parameters of sys0.

Input Arguments

sys0

Identified model containing the parameters whose value is modified to par.

Default:

par

Replacement value for the parameters of the identified model sys0.
For the syntax sys = setpvec(sys0, par), par must be of length nparams(sys0). nparams (sys0) returns a count of all the parameters of sys0.

For the syntax sys = setpvec (sys0, par, 'free'), par must be of length nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the free parameters of sys0.

Use NaN to denote unknown parameter values.
If sys0 is an array of models, then specify par as a cell array with an entry corresponding to each model in sys0.

Output Arguments

sys

Identified model obtained from sys0 by updating the values of the specified parameters.

Examples

Modify the parameter values of a transfer function model.
The goal here is to ultimately use the transfer function model to initialize a model estimation.

```
sys0 = idtf(1,[1 2]);
par = [1; NaN; 0];
sys = setpvec(sys0,par);
```

Modify the value of the free parameters of a transfer function model.

```
sys0 = idtf([1 0],[\begin{array}{lll}{1}&{2}&{0}\end{array}]);
sys0.Structure.den.Free(3) = false
par = [1; 2; 1]
sys = setpvec(sys0,par,'free');
```

```
See Also
getpvec | nparams | setcov
```


setstruc

Set matrix structure for idss model objects

Note: setstruc will be removed in a future release. Use setpvec and the Structure property of idss objects instead.

Syntax

```
setstruc(M,As,Bs,Cs,Ds.Ks,XOs)
setstruc(M,Mods)
```


Description

```
setstruc(M,As,Bs,Cs,Ds.Ks,XOs)
setstruc(M,Mods)
setstruc(M,As,Bs,Cs,Ds.Ks,X0s) is the same as
set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s) .
```

Use empty matrices for structure matrices that should not be changed. You can omit trailing arguments.

In the alternative syntax, Mods is a structure with field names As, Bs, etc., with the corresponding values of the fields.

See Also
idss

sgrid

Generate s-plane grid of constant damping factors and natural frequencies

Syntax

```
sgrid
sgrid(z,wn)
```


Description

sgrid generates, for pole-zero and root locus plots, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to $10 \mathrm{rad} / \mathrm{sec}$ in steps of one $\mathrm{rad} / \mathrm{sec}$, and plots the grid over the current axis. If the current axis contains a continuous s-plane root locus diagram or pole-zero map, sgrid draws the grid over the plot.
sgrid($z, w n$) plots a grid of constant damping factor and natural frequency lines for the damping factors and natural frequencies in the vectors z and wn, respectively. If the current axis contains a continuous s-plane root locus diagram or pole-zero map, sgrid (z, wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the same splane grid.

Examples

Plot s-plane grid lines on the root locus for the following system.

$$
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

You can do this by typing

```
H = tf([2 5 1],[1 2 3])
Transfer function:
```

```
2 s^2 + 5 s + 1
s^2 + 2 s + 3
rlocus(H)
sgrid
```


See Also

pzmap | rlocus | zgrid

showConfidence

Display confidence regions on response plots for identified models

Syntax

```
showConfidence(plot_handle)
showConfidence(plot_handle,sd)
```


Description

showConfidence(plot_handle) displays the confidence region on the response plot, with handle plot_handle, for an identified model.
showConfidence(plot_handle, sd) displays the confidence region for sd standard deviations.

Input Arguments

plot_handle
Response plot handle.
plot_handle is the handle for the response plot of an identified model on which the confidence region is displayed. It is obtained as an output of one of the following plot commands: bodeplot, stepplot, impulseplot, nyquistplot, or iopzplot.

sd

Standard deviation of the confidence region. A common choice is 3 standard deviations, which gives 99.7% significance.

Default: getoptions(plot_handle, 'ConfidenceRegionNumberSD')

Examples

View Confidence Region for Identified Model

Show the confidence bounds on the bode plot of an identified ARX model.
Obtain identified model and plot its bode response.

```
load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);
```


Bode Diagram

$z 1$ is an iddata object that contains time domain system response data. sys is an idpoly model containing the identified polynomial model. h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys.
showConfidence(h);

Bode Diagram

This plot depicts the confidence region for 1 standard deviation.

Specify the Standard Deviation of the Confidence Region

Show the confidence bounds on the bode plot of an identified ARX model.

Obtain identified model and plot its bode response.

```
load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);
```


Bode Diagram

z 1 is an iddata object that contains time domain system response data. sys is an idpoly model containing the identified polynomial model. h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys using 2 standard deviations.

```
sd = 2;
showConfidence(h,sd);
```


Bode Diagram

sd specifies the number of standard deviations for the confidence region displayed on the plot.

Alternatives

You can interactively turn on the confidence region display on a response plot. Right-click the response plot, and select Characteristics > Confidence Region.

```
See Also
bodeplot | impulseplot | iopzplot | nyquistplot | stepplot
```


sigmoidnet

Class representing sigmoid network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

Syntax

```
s=sigmoidnet('NumberOfUnits',N)
s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)
```


Description

sigmoidnet is an object that stores the sigmoid network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
$\mathrm{s}=$ sigmoidnet('NumberOfUnits', N) creates a sigmoid nonlinearity estimator object with N terms in the sigmoid expansion.
s=sigmoidnet (Property1, Value1, ...PropertyN, ValueN) creates a sigmoid nonlinearity estimator object specified by properties in "sigmoidnet Properties" on page 1-922.

Use evaluate (s, x) to compute the value of the function defined by the sigmoidnet object s at x .

sigmoidnet Properties

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(s)
```

```
% Get value of NumberOfUnits property
s.NumberOfUnits
```

You can also use the set function to set the value of particular properties. For example:
set(s, 'LinearTerm', 'on')
The first argument to set must be the name of a MATLAB variable.

Property Name	Description
NumberOfUnits	Integer specifies the number of nonlinearity units in the expansion. Default=10. For example: sigmoidnet (H, 'NumberOfUnits ' , 5)
LinearTerm	Can have the following values: - ' on ' -Estimates the vector L in the expansion. - 'off'-Fixes the vector L to zero. For example: sigmoidnet (H, 'LinearTerm', 'on')
Parameters	A structure containing the parameters in the nonlinear expansion, as follows: - RegressorMean: 1-by-m vector containing the means of x in estimation data, r. - NonLinearSubspace: m-by-q matrix containing Q. - LinearSubspace: m-by-p matrix containing P. - LinearCoef: p -by-1 vector L. - Dilation: q-by-n matrix containing the values b_{n}. - Translation: 1-by-n vector containing the values c_{n}. - OutputCoef: n -by-1 vector containing the values a_{n}. - OutputOffset: scalar d. Typically, the values of this structure are set by estimating a model with a sigmoidnet nonlinearity.

Examples

Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX and HammersteinWiener models. For example:

```
m=nlarx(Data,Orders,sigmoidnet('num',5));
```


More About

Tips

Use sigmoidnet to define a nonlinear function $y=F(x)$, where y is scalar and x is an m -dimensional row vector. The sigmoid network function is based on the following expansion:

$$
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}+c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}+c_{n}\right)+d
\end{aligned}
$$

where f is the sigmoid function, given by the following equation:

$$
f(z)=\frac{1}{e^{-z}+1}
$$

P and Q are m-by-p and m-by-q projection matrices. The projection matrices P and Q are determined by principal component analysis of estimation data. Usually, $p=m$. If the components of x in the estimation data are linearly dependent, then $\mathrm{p}<\mathrm{m}$. The number of columns of Q, q , corresponds to the number of components of x used in the sigmoid function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a HammersteinWiener model, $\mathrm{m}=\mathrm{q}=1$ and Q is a scalar.
r is a $1-b y$-m vector and represents the mean value of the regressor vector computed from estimation data.
d, a, and c are scalars.
L is a p-by- 1 vector.
b are $q-b y-1$ vectors.

Algorithms

sigmoidnet uses an iterative search technique for estimating parameters.

See Also

nlarx | nlhw

sim

Simulate response of identified models to arbitrary inputs

Syntax

```
y = sim(sys,udata)
y = sim(sys,udata,opt)
[y,y_sd] = sim(
```

\qquad

``` )
[y,y_sd,x] = sim(
``` \(\qquad\)
``` )
```


Description

$y=$ sim(sys, udata) simulates the response an identified model, sys, using the input data, udata. Zero initial conditions are used for all model types except idnlgrey where the initial conditions stored internally in the model are used. y is the simulation output.
$y=\operatorname{sim}($ sys, udata, opt) simulates the system response using the option set, opt, to specify simulation behavior.
[y,y_sd] = sim(__) returns the estimated standard deviation, y_sd, for sys.
$\left[y, y _s d, x\right]=\operatorname{sim}(\ldots \quad)$ returns the state trajectory, x, for state-space models.

Input Arguments

sys

Identified model.
sys may be a linear or nonlinear identified model.

udata

Simulation input data.

Specify data as an iddata object, using only the input channels.
If sys is a linear model, you can use either time- or frequency-domain data. If sys is a nonlinear model, you can use only time-domain data.

For time-domain simulation of discrete-time systems, udata may also be specified as a matrix whose columns correspond to each input channel.

If you do not have data from an experiment, use idinput to generate signals of various characteristics.

opt

Simulation options.
opt is an option set, created using simOptions, that specifies options including:

- Signal offsets
- Initial condition handling
- Additive noise

Output Arguments

y

Simulated response.
y is an iddata object representing the simulated response for sys using udata as the simulation input.

If udata represents time-domain data, then y is the simulated response for the time vector corresponding to udata.

If udata represents frequency-domain data, then y contains the Fourier transform of the corresponding sampled time-domain output signal. This signal is obtained by the multiplying the frequency response of sys, $G(w)$ and $U(w)$.

For multi-experiment data, y is a corresponding multi-experiment iddata object.

y_sd

Estimated standard deviation of the simulated response for linear models.
y_sd is derived using first order sensitivity considerations (Gauss approximation formula).

For nonlinear models, y_sd is [].

x

Estimated state trajectory for state-space models.
Relevant only if sys is a state-space model (idss, idgrey or idnlgrey).
x is an $N s$-by- $N x$ matrix, where $N s$ is the number of samples and $N x$ is the number of states.

Examples

Simulate Model Response

Simulate the response of an identified model.
Obtain the identified model.
load iddata2 z2;
sys = tfest(z2,3);
sys is an idtf model that encapsulates the third-order transfer function estimated for the measured data $z 2$.

Simulate the model.
figure;
sim(sys,z2);

Simulated output \#1: y1

Specify Simulation Option

Simulate the model response of an identified model. Specify simulation options to study the contribution of noise to the simulated model response.

Obtain the identified model.

```
load iddata2 z2;
sys = tfest(z2,3);
```

sys is an idtf model that encapsulates the third-order transfer function estimated for the measured data $z 2$.

Create a simulation option set that adds noise to the simulated model response.

```
e = randn(length(z2.u),1);
opt = simOptions('AddNoise',true,'NoiseData',e);
```

e represents white, Gaussian noise. opt is an option set that specifies the addition of noise data, e, to the simulated model response. You specify the noise data vector, e, that is added to the simulated model response by using the option NoiseData.

Obtain the simulated model response.
figure;
sim(sys,z2,opt);

Simulated output \#1: y1

Simulate Model Using Initial Conditions Obtained During Estimation

Simulate a model using the same initial conditions as computed during its estimation.

Load data.
load iddata1 z1
Specify the estimation option to estimate the initial state.

```
estimOpt = ssestOptions('InitialState', 'estimate');
```

Estimate a state-space model and return the value of the estimated initial state.

```
[sys, x0] = ssest(z1, 2, estimOpt);
```

Specify initial conditions for simulation

```
simOpt = simOptions('InitialCondition', x0);
```

Simulate the estimated model

```
Input = z1(:,[],:);
```

figure;
sim(sys, z1, sim0pt)

Simulated output \#1: y1

Alternatives

- Use simsd for a Monte-Carlo method of computing the standard deviation of the response.
- sim extends lsim to facilitate additional features relevant to identified models:
- Simulation of nonlinear models
- Simulation with additive noise
- Incorporation of signal offsets
- Computation of response standard deviation (linear models only)
- Frequency-domain simulation (linear models only)
- Simulations using different intersample behavior for different inputs

To obtain the simulated response without any of the preceding operations, use lsim.

More About

Tips

- You can specify initial conditions for simulation by creating an option set using simOptions and then setting the InitialCondition option appropriately.

For multi-experiment data, you can configure each experiment's initial conditions individually.

- You can simulate the initial condition response of time-series models (models with no inputs) using sim. To do so, specify udata as an $N s$-by- 0 signal, where $N s$ is the number of samples. As with input-output models, you can study the effect of noise on the response by using the AddNoise and NoiseData simulation options. For more information regarding these simulation options, see simOptions.

For example:
load iddata9 z9;
sys = ar(z9,4,'ls');
data $=$ iddata([],zeros(512,0), z9.Ts); opt $=$ simOptions('AddNoise',true); y = sim(sys,data,opt);

- You can specify the addition of a custom noise signal to the simulated response. To do so, create an option set using simOptions and then set the NoiseData option appropriately.

```
See Also
compare | forecast | idinput | lsim | predict | simOptions | simsd | step
```


sim(idnlarx)

Simulate nonlinear ARX model

Syntax

```
YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)
```


Description

$Y S=\operatorname{sim}(M O D E L, U)$ simulates a dynamic system with an idnlarx model.
YS = sim(MODEL, U,'Noise') produces a noise corrupted simulation with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL.
$Y S=\operatorname{sim}(M O D E L, U, '$ InitialState', INIT $)$ specifies the initial conditions for simulation using various options, such as numerical initial state vector or past I/O data.

To simulate the model with user-defined noise, set the input $U=$ [UIN E], where UIN is the input signal and E is the noise signal. UIN and E must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.

Input Arguments

- MODEL: idnlarx model object.
- U: Input data for simulation, an iddata object (where only the input channels are used) or a matrix. For simulations with noisy data, U contains both input and noise channels.
- INIT: Initial condition specification. INIT can be one of the following:
- A real column vector XO , for the state vector corresponding to an appropriate number of output and input data samples prior to the simulation start time. To build an initial state vector from a given set of input-output data or to generate equilibrium states, see data2state(idnlarx), findstates(idnlarx) and findop (idnlarx). For multi-experiment data, X0 may be a matrix whose columns give different initial states for different experiments.
- 'z': (Default) Zero initial state, equivalent to a zero vector of appropriate size.
- iddata object containing output and input data samples prior to the simulation start time. If it contains more data samples than necessary, only the last samples are taken into account. This syntax is equivalent to sim(MODEL, U,' InitialState', data2state(MODEL, INIT)), where data2state (idnlarx) transforms the iddata object INIT to a state vector.

Output Arguments

- YS: Simulated output. An iddata object if U is an iddata object, a matrix otherwise.

Note: If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

Examples

Simulate a SISO idnlarx model

Simulate a single-input single-output idnlarx model M around a known equilibrium point, with an input level of 1 and output level of 10 .

1 Load the sample data.
load iddata2;
2 Estimate an idnlarx model from the data.
M = nlarx (z2, [2 2 1], 'tree');
3 Estimate current states of model based on past data.

```
x0 = data2state(M, struct('Input',1, 'Output', 10));
```

4 Simulate the model using the initial states returned by data2state.
sim(M, z2, 'init', x0);

Continue from End of Previous Simulation

Continue the simulation of a nonlinear ARX model from the end of a previous simulation run.

Estimate a nonlinear ARX model from data.

```
load iddata2
M = nlarx(z2, [2 2 1], 'tree');
```

Simulate the model using the first half of the input data z2. Start the simulation from zero initial states.

```
u1 = z2(1:200,[]);
ys1 = sim(M, u1, 'init', 'z');
```

Start another simulation using the second half of the input data z2. Use the same states of the model from when the first simulation ended.

```
u2 = z2(201:end, []);
```

To set the initial states for second simulation correctly, package input u1 and output ys1 from the first simulation into one iddata object. Pass this data as initial conditions for the next simulation.

```
firstSimData = [ys1,u1];
ys2 = sim(M, u2, 'init', firstSimData);
```

Verify the two simulations by comparing to a complete simulation using all the input data $z 2$.

```
uTotal = z2(:,[]); % extract the whole input data
ysTotal = sim(M, uTotal, 'init', 'z');
```

Compare the three responses ys1, ys2 and ysTotal by plotting them. ys1 should be equal to first half of ysTotal. ys2 should be equal to the second half of ysTotal.

```
plot(ys1,'b', ys2, 'g', ysTotal, 'k*')
```

Input-Output Data

The plot shows that the three responses ys1, ys2 and ysTotal overlap.

Match Model Response to Output Data

Estimate initial states of model M such that the response best matches the output in data set $z 2$.

1 Load the sample data and create data object z2.

$$
\begin{aligned}
& \text { load iddata2; } \\
& \text { z2 = z2(1:50); }
\end{aligned}
$$

2 Estimate idnlarx model from data.

```
M = nlarx(z2,[4 3 2],'wave');
```

3 Estimate initial states of M to best fit $z 2$. y in the simulated response.

```
x0 = findstates(M,z2,[],'sim');
```

4 Simulate the model.

```
ysim = sim(M, z2.u, 'init', x0)
```

5 Compare ysim with the output signal in z2:
time = z2.SamplingInstants;
plot(time, ysim, time, z2.y,'.')

Simulate Near Steady State with Known Input and Unknown Output

Start simulation of a model near steady state, where the input is known to be 1 , but the output is unknown.

- Load sample data and create data object z2.
load iddata2
z2 = z2(1:50);
- Estimate idnlarx model from data.

```
M = nlarx(z2, [4 3 2], 'wave');
```

- Determine equilibrium state values for input 1 and the unknown target output. x0 = findop(M, 'steady', 1, NaN);
- Simulate the model using initial states $x 0$.

```
sim(M, z2.u, 'init', x0)
```


See Also

```
predict | findop(idnlarx) | data2state(idnlarx) | findstates(idnlarx)
```


sim(idnlgrey)

Simulate nonlinear ODE model

Syntax

```
YS = sim(NLSYS,DATA)
YS = sim(NLSYS,DATA,'Noise');
YS = sim(NLSYS,DATA,XOINIT);
YS = sim(NLSYS,DATA,'Noise',XOINIT);
YS = sim(NLSYS,DATA,'Noise','InitialState',XOINIT);
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',XOINIT);
```


Description

YS = sim(NLSYS,DATA) simulates the output of an idnlgrey model.
YS = sim(NLSYS, DATA, 'Noise') ; simulates the model with Gaussian noise added to YS.

YS = sim(NLSYS,DATA, XOINIT) ; simulates the model with the specified initial states.
YS = sim(NLSYS, DATA, 'Noise', XOINIT) ; simulates the model with the specified initial states and with Gaussian noise added.

YS = sim(NLSYS,DATA, 'Noise','InitialState',XOINIT); simulates the model with the specified initial states.
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',XOINIT); performs simulation starting with the specified initial states and with Gaussian noise added, and returns the final states of the model after the simulation is completed.

To simulate the model with user-defined noise, set the input DATA = [UIN E], where UIN is the input signal and E is the noise signal. UIN and E must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.

Input Arguments

- NLSYS: idnlgrey model object.
- DATA: Input-noise data [U E]. If E is omitted and 'Noise' is not given as an input argument, then a noise-free simulation is obtained. If E is omitted and 'Noise' is given as an input argument, then Gaussian noise created by randn(size(YS))*sqrtm(NLSYS. NoiseVariance) will be added to YS. If both E and 'Noise' are given, then E specifies the noise to add to YS. For time-continuous idnlgrey objects, DATA passed as a matrix will lead to that the data sample interval, Ts, is set to one.
- XOINIT: Initial states. Can have the following values:
- 'zero' : Zero initial state $\mathrm{x}(0)$ with all states fixed (nlsys.InitialStates.Fixed is thus ignored).
- 'fixed ' (default): Struct array (NLSYS. InitialState) determines the values of the model initial states and all states are fixed. (NLSYS. InitialStates.Fixed is ignored). Same as 'model'.
- vector/matrix: Column vector of initial state values. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. All initial states are kept fixed (nlsys. InitialStates.Fixed is thus ignored).
- struct array : Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments.)
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- Fixed: True (or a 1-by-Ne vector of True values). Any false value is ignored.

Output Arguments

- YS: Simulated output. If DATA is an iddata object, then YS will also be an iddata object. Otherwise, YS will be a matrix where the k:th output is found in the k :th column of YS. If DATA is a multiple-experiment iddata object, then YS will be a multiple experiment object as well.
- YSD: Empty vector ([] .) In the future, it will contain the estimated standard deviation of the simulated output.
- XFINAL: Final states computed. In the single experiment case it is a column vector of length Nx. For multi-experiment data, XFINAL is an Nx-by-Ne matrix with the ith column specifying the initial state of experiment i.

Note: If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

Examples

In this example you simulate an idnlgrey model for a data set \mathbf{z}. This example uses the nlgr model created in idnlgreydemo2.

1 Load the data set and create an idnlgrey model.
load twotankdata;
2 Estimate the idnlgrey model.

```
% Specify file.
FileName = 'twotanks_c';
% Specify model orders [ny nu nx].
Order = [11 1 2];
% Specify initial parameters.
Parameters = {0.5; 0.0035; 0.019; ...
    9.81; 0.25; 0.016};
% Specify initial states.
InitialStates = [0; 0.1];
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, ...
    InitialStates, Ts, ...
    'Name', 'Two tanks');
```

3 Create an iddata object z from data z (from twotankdata.mat). z = iddata([], u, 0.2, 'Name', 'Two tanks');
4 Simulate the model using the input signal from the data z. sim(nlgr,z)

See Also

findstates(idnlgrey) | pe | pem | predict

sim(idnlhw)

Simulate Hammerstein-Wiener model

Syntax

```
YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)
```


Description

YS $=\operatorname{sim}(M O D E L, U)$ simulates the output of an idnlhw model.
YS = sim(MODEL,U,'Noise') simulates the model output with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState', INIT) specifies initial conditions for starting the simulation.

To simulate the model with user-defined noise, set the input $\mathrm{U}=$ [UIN E], where UIN is the input signal and E is the noise signal. UIN and E must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.

Input Arguments

- MODEL: idnlhw model object.
- U: Input data for simulation, which is an iddata object (where only the input channels are used) or a matrix. For simulations with noisy data, U contains both input and noise channels.
- INIT: Initial condition for simulation. INIT has one of the following values:
- Vector of initial state values. To estimate an initial state vector from inputoutput data or to generate equilibrium states, see the findstates (idnlhw) and findop(idnlhw) reference pages. For multiple-experiment data, enter a matrix with the same number of columns as the number of experiments.
- 'z': (Default) Vector containing zeros and corresponding to a system starting from rest.

Output Arguments

- YS: Simulated output, which is an iddata object when U is an iddata object, or a matrix otherwise.

Note: If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

Examples

Simulation Using Initial States to Best Fit Model Response to Measured Output

In this example you simulate the model output using initial states that minimize the error between the simulated and the measured output. z 2 is the measured data.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Wiener model.

```
M = nlhw(z2,[4 3 2],'wave','pwl');
```

3 Compute the initial states that best fit the model response to the measured output.
x0 = findstates($\mathrm{M}, \mathrm{z2}$);
4 Simulate the model using the estimated initial states.

```
ysim = sim(M,z2.u,'init',x0)
```

5 Compare ysim to output signal in z2:
t = z2.samp;
plot(t, ysim, t, z2.y)

Simulating a Hammerstein-Wiener Model at Steady-State with Known Input and Unknown Output

In this example, you simulate a single-input single-output idnlhw model about a steadystate operating point, where the input level is known to be 1 and the output level is unknown.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Wiener model.
M = nlhw(z2,[4 3 2],'wave','pwl');
3 Compute steady-state operating point values corresponding to an input level of 1 and an unknown output level.
x0 = findop(M,'steady',1,NaN);
4 Simulate the model using the estimated initial states.
sim(M,z2.u,'init', x0)

See Also

findop(idnlhw) | predict | findstates(idnlhw)

simOptions

Option set for sim

Syntax

```
opt = simOptions
```

opt = simOptions(Name, Value)

Description

opt $=$ simOptions creates the default options set for sim.
opt $=$ simOptions (Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition'

Specify initial conditions.
InitialCondition must be one of the following:

- 'z' - Zero initial conditions.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models (idss and idgrey) only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval that starts before the start time of the data used by compare. In case the data used by compare is a time-series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a structure array of $N e$ elements, where $N e$ is the number of experiments.

Default: 'z', except for idnlgrey models where the initial conditions stored internally in the model are used.

'InputOffset'

Input signal offset.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data before the input is used to simulate the model.

Default: []

'OutputOffset'

Output signal offset.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multi-experiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is added to the corresponding simulated response of the model.

Default: []

'AddNoise'

Specify whether noise should be added to the response model or not.
Default: false

'NoiseData'

Noise signal data.
Specify the noise signal, e, for the model

$$
y(t)=G u(t)+H e(t)
$$

Where G is the transfer function from the input, $u(t)$, to the output, $y(t)$.
NoiseData is used for simulation only when AddNoise is true.
NoiseData takes one of the following:

- Matrix - $N s$-by- $N y$ matrix, where $N s$ is the number of input data samples, and $N y$ is the number of outputs. Each entry of this matrix is added to the corresponding output data point. Before addition, the noise is scaled according to the NoiseVariance property of the identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise with zero mean and unit covariance.

- Cell array - For multiexperiment data, specify NoiseData as a cell array of $N e$ matrices. $N e$ is the number of experiments.
- [] - Gaussian noise is automatically specified as NoiseData.

Default: []

Output Arguments

opt

Option set containing the specified options for sim.

Examples

Create Default Options Set for Model Simulation

opt = simOptions;

Specify Options for Model Simulation

Create an options set for sim using zero initial conditions, and set the input offset to 5 .

```
opt = simOptions('InitialCondition','z','InputOffset',5);
```

Alternatively, use dot notation to set the values of opt.

```
opt = simOptions;
```

opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also
sim

simsd

Simulate linear models with uncertainty using Monte Carlo method

Syntax

```
simsd(sys,data)
simsd(sys,data,N)
simsd(sys,data,N,opt)
y = simsd(sys,data,N,opt)
[y,y_sd] = simsd(sys,data,N,opt)
```


Description

simsd(sys, data) simulates and plots the response of 10 perturbed realizations of the identified model, sys. Simulation input data, data, is used to compute the simulated response.

The parameters of the perturbed realizations are consistent with the parameter covariance of the original model, sys.
simsd(sys, data, N) simulates and plots the response of N perturbed realizations of the identified model, sys.
simsd(sys, data, N, opt) simulates the system response using the option set, opt, to specify simulation behavior.
$y=$ simsd(sys, data, N, opt) returns the simulation result as a cell array, y. No simulated response plot is produced.
[y,y_sd] = simsd(sys, data, N, opt) also returns the estimated standard deviation, y_sd, for the simulated response.

The parameter changes in the randomly selected models are scaled to be small (ca 0.1%) compared to the parameter values. The response changes are then scaled up to correspond to one standard deviation. The scaling does not apply to free delays of idproc or idtf models.

Input Arguments

sys

Identified linear model.

data

Simulation input data.
Specify data as a time- or frequency-domain iddata object, with input channels only.
For time-domain simulation of discrete-time systems, data may also be specified as a matrix whose columns correspond to each input channel.

N

Number of perturbed realizations for simulation.
Specify N as a positive integer.
Default: 10
opt
Simulation options.
opt is an option set, created using simsdOptions, that specifies options including:

- Signal offsets
- Initial condition handling
- Additive noise

Output Arguments

y

Simulated response.
y is a cell array of $N+1$ elements, where N is the number of perturbed realizations. y $\{1\}$ contains the nominal response for sys. The remaining elements contain the simulated response for the N perturbed realizations.

y_sd

Estimated standard deviation of the simulated response.
y_sd is derived by averaging the simulations results in y.

Examples

Simulate Estimated Model Using Monte-Carlo Method

Simulate an estimated model using the Monte-Carlo method for a specified number of model perturbations.

Obtain an identified model.

```
load iddata3
sys = ssest(z3,2);
```

sys is an idss model that encapsulates the estimated second-order, state-space model for the measured data, z3.

Simulate the estimated model using the Monte-Carlo method. Specify the number of random model perturbations.

```
N = 20;
```

simsd(sys,z3,N)

Simulated output\#1: y1

More About

Tips

- You can specify initial conditions for simulation by creating an option set using simsdOptions and then setting the InitialCondition option appropriately.
- simsd yields meaningful results only when sys contains information regarding parameter uncertainty. Use getcov to examine the parameter uncertainty for sys. For models with no parameter uncertainty data, the results of simsd match that of sim.

```
See Also
getcov | rsample | showConfidence | sim | simsdOptions
```


simsdOptions

Option set for simsd

Syntax

opt = simsdOptions
opt = simsdOptions(Name, Value)

Description

opt $=$ simsdOptions creates the default options set for simsd.
opt = simsdOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialCondition'

Specify initial conditions.
InitialCondition takes one of the following:

- 'z' - Zero initial conditions.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models (idss and idgrey) only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval that starts before the start time of the data used by compare. In case the data used by compare is a time-series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of $N e$ elements, where $N e$ is the number of experiments.

'Input0ffset'

Input signal offset.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data before the input is used to simulate the model.

Default: []

'OutputOffset'

Output signal offset.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multi-experiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is added to the simulated response of the model.
Default: []

'AddNoise'

Specify whether noise should be added to the response model or not.

Default: false

'NoiseData'

Noise signal data.
Specify the noise signal, e, for the model

$$
y(t)=G u(t)+H e(t)
$$

Where G is the transfer function from the input, $u(t)$, to the output, $y(t)$.
NoiseData is used for simulation only when AddNoise is true.
NoiseData takes one of the following:

- Matrix - $N s$-by- $N y$ matrix, where $N s$ is the number of input data samples, and $N y$ is the number of outputs. Each entry of this matrix is added to the corresponding output data point. Before addition, the noise is scaled according to the NoiseVariance property of the identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise with zero mean and unit covariance.

- Cell array - For multiexperiment data, specify NoiseData as a cell array of Ne matrices. $N e$ is the number of experiments.
- [] - Gaussian noise is automatically specified as NoiseData.

Default: []

Output Arguments

opt

Option set containing the specified options for simsd.

Examples

Create Default Options Set for Model Simulation

opt = simsdOptions;

Specify Options for Model Simulation

Create an options set for simsd using zero initial conditions, and set the input offset to 5 .

```
opt = simsdOptions('InitialCondition','z','InputOffset',5);
```

Alternatively, use dot notation to set the values of opt.

```
opt = simsdOptions;
```

opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also
 simsd

size

Query output/input/array dimensions of input-output model and number of frequencies of FRD model

Syntax

```
size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Nf = size(sys,'frequency')
```


Description

When invoked without output arguments, size(sys) returns a description of type and the input-output dimensions of sys. If sys is a model array, the array size is also described. For identified models, the number of free parameters is also displayed. The lengths of the array dimensions are also included in the response to size when sys is a model array.
d = size(sys) returns:

- The row vector $\mathrm{d}=[\mathrm{Ny} \mathrm{Nu}]$ for a single dynamic model sys with Ny outputs and Nu inputs
- The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array of dynamic models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.
$\mathrm{Nu}=\operatorname{size}($ sys,2) returns the number of inputs of sys.
Sk = size(sys,2+k) returns the length of the k-th array dimension when sys is a model array.
$\mathrm{Nf}=$ size(sys,'frequency') returns the number of frequencies when sys is a frequency response data model. This is the same as the length of sys.frequency.

Examples

Example 1

Consider the model array of random state-space models

```
sys = rss(5,3,2,3);
```

Its dimensions are obtained by typing

```
size(sys)
```

3×1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

Example 2

Consider the process model:
sys = idproc(\{'p1d', 'p2'; 'p3uz', 'p0'\});
It's input-output dimensions and number of free parameters are obtained by typing:
size(sys)
Process model with 2 outputs, 2 inputs and 12 free parameters.

See Also

nparams | isempty | issiso | ndims

spa

Estimate frequency response with fixed frequency resolution using spectral analysis

Syntax

$G=\operatorname{spa}(d a t a)$
G = spa(data,winSize,freq)
G = spa(data,winSize,freq,MaxSize)

Description

$G=\operatorname{spa}(d a t a)$ estimates frequency response (with uncertainty) and noise spectrum from time- or frequency-domain data. data is an iddata or idfrd object and can be complex valued. G is as an idfrd object. For time-series data, G is the estimated spectrum and standard deviation.
$G=s p a(d a t a, w i n S i z e, f r e q)$ estimates frequency response at frequencies freq. freq is a row vector of values in rad/sec. winSize is a scalar integer that sets the size of the Hann window.

G = spa(data,winSize,freq,MaxSize) can improve computational performance using MaxSize to split the input-output data such that each segment contains fewer than MaxSize elements. MaxSize is a positive integer.

Examples

Estimate frequency response with fixed resolution at 128 equally spaced, logarithmic frequency values between 0 (excluded) and п:

```
load iddata3;
z = z3; % z is an iddata object with Ts=1
g = spa(z);
bode(g)
```

Estimate frequency response with fixed resolution at logarithmically spaced frequencies:

```
% Define frequency vector
```

```
w = logspace(-2,pi,128);
% Compute frequency response
g= spa(z,[],w); % [] specifies the default lag window size
h = bodeplot(g);
showConfidence(h,3)
figure
h = spectrumplot(g);
showConfidence(h,3)
% The plots include confidence interval
% of 3 standard deviations
```


More About

Frequency Response Function

Frequency response function describes the steady-state response of a system to sinusoidal inputs. For a linear system, a sinusoidal input of a specific frequency results in an output that is also a sinusoid with the same frequency, but with a different amplitude and phase. The frequency response function describes the amplitude change and phase shift as a function of frequency.

To better understand the frequency response function, consider the following description of a linear, dynamic system:

$$
y(t)=G(q) u(t)+v(t)
$$

where $u(t)$ and $y(t)$ are the input and output signals, respectively. $G(q)$ is called the transfer function of the system-it captures the system dynamics that take the input to the output. The notation $G(q) u(t)$ represents the following operation:

$$
G(q) u(t)=\sum_{k=1}^{\infty} g(k) u(t-k)
$$

q is the shift operator, defined by the following equation:

$$
G(q)=\sum_{k=1}^{\infty} g(k) q^{-k} \quad q^{-1} u(t)=u(t-1)
$$

$G(q)$ is the frequency-response function, which is evaluated on the unit circle, $G\left(q=e^{i w}\right)$.

Together, $G\left(q=e^{i w}\right)$ and the output noise spectrum $\hat{\Phi}_{v}(\omega)$ are the frequency-domain description of the system.

The frequency-response function estimated using the Blackman-Tukey approach is given by the following equation:

$$
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
$$

In this case, ${ }^{\wedge}$ represents approximate quantities. For a derivation of this equation, see the chapter on nonparametric time- and frequency-domain methods in System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Output Noise Spectrum

The output noise spectrum (spectrum of $v(t)$) is given by the following equation:

$$
\hat{\Phi}_{v}(\omega)=\hat{\Phi}_{y}(\omega)-\frac{\left|\hat{\Phi}_{y u}(\omega)\right|^{2}}{\hat{\Phi}_{u}(\omega)}
$$

This equation for the noise spectrum is derived by assuming the linear relationship $y(t)=G(q) u(t)+v(t)$, that $u(t)$ is independent of $v(t)$, and the following relationships between the spectra:

$$
\begin{aligned}
& \Phi_{y}(\omega)=\left|G\left(e^{i \omega}\right)\right|^{2} \Phi_{u}(\omega)+\Phi_{v}(\omega) \\
& \Phi_{y u}(\omega)=G\left(e^{i \omega}\right) \Phi_{u}(\omega)
\end{aligned}
$$

where the noise spectrum is given by the following equation:

$$
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
$$

$\hat{\Phi}_{y u}(\omega)$ is the output-input cross-spectrum and $\hat{\Phi}_{u}(\omega)$ is the input spectrum.

Alternatively, the disturbance $v(t)$ can be described as filtered white noise:

$$
v(t)=H(q) e(t)
$$

where $e(t)$ is the white noise with variance λ and the noise power spectrum is given by the following equation:

$$
\Phi_{v}(\omega)=\lambda\left|H\left(e^{i \omega}\right)\right|^{2}
$$

Algorithms

spa applies the Blackman-Tukey spectral analysis method by following these steps:
1 Computes the covariances and cross-covariance from $u(t)$ and $y(t)$:

$$
\begin{aligned}
& \hat{R}_{y}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) y(t) \\
& \hat{R}_{u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} u(t+\tau) u(t) \\
& \hat{R}_{y u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) u(t)
\end{aligned}
$$

2 Computes the Fourier transforms of the covariances and the cross-covariance:

$$
\begin{aligned}
& \hat{\Phi}_{y}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{u}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{y u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y u}(\tau) W_{M}(\tau) e^{-i \omega \tau}
\end{aligned}
$$

where $W_{M}(\tau)$ is the Hann window with a width (lag size) of M. You can specify M to control the frequency resolution of the estimate, which is approximately equal $2 \pi / \mathrm{M}$ $\mathrm{rad} /$ sampling interval.

By default, this operation uses 128 equally spaced frequency values between 0 (excluded) and n, where $w=[1: 128] / 128 * \mathrm{pi} / T s$ and Ts is the sampling interval of that data set. The default lag size of the Hann window is $\mathrm{M}=$ min(length(data)/10,30). For default frequencies, uses fast Fourier transforms (FFT)-which is more efficient than for user-defined frequencies.

Note: $\mathrm{M}=\mathrm{Y}$ is in Table 6.1 of Ljung (1999). Standard deviations are on pages 184 and 188 in Ljung (1999).
3
Compute the frequency-response function $\hat{G}_{N}\left(e^{i \omega}\right)$ and the output noise spectrum

$$
\hat{\Phi}_{v}(\omega) .
$$

$$
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
$$

$$
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
$$

spectrum is the spectrum matrix for both the output and the input channels. That is, if z = [data.OutputData, data.InputData], spectrum contains as spectrum data the matrix-valued power spectrum of z.

$$
S=\sum_{m=-M}^{M} E z(t+m) z(t)^{\prime} W_{M}\left(T_{s}\right) \exp (-i \omega m)
$$

' is a complex-conjugate transpose.

- "Identifying Frequency-Response Models"
- "Spectrum Normalization"

References

Ljung, L. System Identification: Theory for the User, Second Ed., Prentice Hall PTR, 1999.

```
See Also
etfe | freqresp | idfrd | spafdr | bode | spectrum
```


spafdr

Estimate frequency response and spectrum using spectral analysis with frequencydependent resolution

Syntax

$g=s p a f d r(d a t a)$
g = spafdr(data,Resol,w)

Description

$g=s p a f d r(d a t a)$ estimates the transfer function and noise spectrum Φ_{v} of the general linear model

$$
y(t)=G(q) u(t)+v(t)
$$

where $\Phi_{v}(\omega)$ is the spectrum of $v(t)$. data contains the output-input data as an iddata object. The data can be complex valued, and either time or frequency domain. It can also be an idfrd object containing frequency-response data. g is an idfrd object with the estimate of $G\left(e^{i \omega}\right)$ at the frequencies ω specified by row vector w . g also includes information about the spectrum estimate of $\Phi_{v}(\omega)$ at the same frequencies. Both results are returned with estimated covariances, included in g . The normalization of the spectrum is the same as described in spa.
g = spafdr(data,Resol,w) specifies frequencies and frequency resolution.

Frequencies

The frequency variable w is either specified as a row vector of frequencies, or as a cell array $\{$ wmin, wmax $\}$. In the latter case the covered frequencies will be 50 logarithmically spaced points from wmin to wmax. You can change the number of points to NP by entering \{wmin, wmax, NP\}.

Omitting w or entering it as an empty matrix gives the default value, which is 100 logarithmically spaced frequencies between the smallest and largest frequency in data.

For time-domain data, this means from $1 / \mathrm{N} * \mathrm{Ts}$ to $\mathrm{pi} * \mathrm{Ts}$, where Ts is the sampling interval of data and N is the number of data.

Resolution

The argument Resol defines the frequency resolution of the estimates. The resolution (measured in rad/s) is the size of the smallest detail in the frequency function and the spectrum that is resolved by the estimate. The resolution is a tradeoff between obtaining estimates with fine, reliable details, and suffering from spurious, random effects: The finer the resolution, the higher the variance in the estimate. Resol can be entered as a scalar (measured in rad/s), which defines the resolution over the whole frequency interval. It can also be entered as a row vector of the same length as w. Then Resol(k) is the local, frequency-dependent resolution around frequency $w(k)$.

The default value of Resol, obtained by omitting it or entering it as the empty matrix, is Resol $(k)=2(w(k+1)-w(k))$, adjusted upwards, so that a reasonable estimate is guaranteed. In all cases, the resolution is returned in the variable g.Report.WindowSize.

More About

Algorithms

If the data is given in the time domain, it is first converted to the frequency domain. Then averages of $Y(w) \operatorname{Conj}(U(w))$ and $U(w) \operatorname{Conj}(U(w))$ are formed over the frequency ranges w, corresponding to the desired resolution around the frequency in question. The ratio of these averages is then formed for the frequency-function estimate, and corresponding expressions define the noise spectrum estimate.

See Also
bode | etfe | freqresp | idfrd | nyquist | spa | spectrum

spectrum

Output power spectrum of time series models

Syntax

```
spectrum(sys)
spectrum(sys,{wmin, wmax})
spectrum(sys,w)
spectrum(sys1,...,sysN,w)
ps = spectrum(sys,w)
[ps,w] = spectrum(sys)
[ps,w,sdps] = spectrum(sys)
```


Description

spectrum(sys) creates an output power spectrum plot of the identified time series model sys. The frequency range and number of points are chosen automatically.
sys is a time series model, which represents the system:

$$
y(t)=H e(t)
$$

Where, $e(t)$ is a Gaussian white noise and $y(t)$ is the observed output.
spectrum plots abs $\left(H^{\prime} H\right)$, scaled by the variance of $e(t)$ and the sample time.
If sys is an input-output model, it represents the system:

$$
y(t)=G u(t)+H e(t)
$$

Where, $u(t)$ is the measured input, $e(t)$ is a Gaussian white noise and $y(t)$ is the observed output.

In this case, spectrum plots the spectrum of the disturbance component $\mathrm{He}(\mathrm{t})$.
spectrum(sys,\{wmin, wmax\}) creates a spectrum plot for frequencies ranging from wmin to wmax.
spectrum(sys,w) creates a spectrum plot using the frequencies specified in the vector w.
spectrum(sys1, ..., sysN,w) creates a spectrum plot of several identified models on a single plot. The w argument is optional.

You can specify a color, line style and marker for each model. For example:
spectrum(sys1,'r',sys2,'y--',sys3,'gx');
ps = spectrum(sys,w) returns the power spectrum amplitude of sys for the specified frequencies, w. No plot is drawn on the screen.
$[p s, w]=$ spectrum(sys) returns the frequency vector, w, for which the output power spectrum is plotted.
[ps,w,sdps] = spectrum(sys) returns the estimated standard deviations of the power spectrum.

For discrete-time models with sampling time Ts, spectrum uses the transformation z $=\exp \left(j * w^{*} T s\right)$ to map the unit circle to the real frequency axis. The spectrum is only plotted for frequencies smaller than the Nyquist frequency pi/Ts, and the default value 1 (time unit) is assumed when Ts is unspecified.

Input Arguments

sys

Identified model.
If sys is a time series model, it represents the system:

$$
y(t)=H e(t)
$$

Where, $e(t)$ is a Gaussian white noise and $y(t)$ is the observed output.
If sys is an input-output model, it represents the system:

$$
y(t)=G u(t)+H e(t)
$$

Where, $u(t)$ is the measured input, $e(t)$ is a Gaussian white noise and $y(t)$ is the observed output.

wmin

Minimum frequency of the frequency range for which the output power spectrum is plotted.

Specify wmin in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

wmax

Maximum frequency of the frequency range for which the output power spectrum is plotted.

Specify wmax in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

w

Frequencies for which the output power spectrum is plotted.
Specify w in rad/TimeUnit, where TimeUnit is sys.TimeUnit.
sys1,...,sysN
Identified systems for which the output power spectrum is plotted.

Output Arguments

ps
Power spectrum amplitude.
If sys has Ny outputs, then ps is an array of size [Ny Ny length(w)]. Where $\mathrm{ps}(:,:, k)$ corresponds to the power spectrum for the frequency at $w(k)$.

For amplitude values in $d B$, type $p s d b=10 * \log 10(p s)$.
w
Frequency vector for which the output power spectrum is plotted.

sdps

Estimated standard deviation of the power spectrum.

Examples

Noise Spectrum of SISO Linear Identified Model

Plot the noise spectrum of a single-input, single-output linear identified model.
Obtain the identified model.

```
load iddata1 z1;
sys = n4sid(z1,2);
```

Plot the noise spectrum for the identified model.

```
spectrum(sys);
```


Output Spectrum of AR Model for 2-Mode Impulse Response

Plot the output spectrum of an AR model, computed for a 2 -mode impulse response of a dynamic system.

Obtain the identified model.

```
load iddata9 z9
sys = ar(z9,4,'ls');
```

Plot the output spectrum of the identified model.
spectrum(sys);

See Also

ar | armax | arx | bode | forecast | freqresp | nlarx

spectrumplot

Plot disturbance spectrum of linear identified models

Syntax

```
spectrumplot(sys)
spectrumplot(sys,line_spec)
spectrumplot(sys1,line_spec1,...,sysN,line_specN)
spectrumplot(ax,
spectrumplot(__, ,plot_options)
spectrumplot(sys,w)
h = spectrumplot(
```

\qquad

``` )
```


Description

spectrumplot (sys) plots the disturbance spectrum of the model, sys. The software chooses the number of points on the plot and the plot frequency range.

If sys is a time-series model, its disturbance spectrum is the same as the model output spectrum. You generally use this function with time-series models.
spectrumplot(sys, line_spec) uses line_spec to specify the line type, marker symbol, and color.
spectrumplot(sys1, line_spec1,..., sysN, line_specN) plots the disturbance spectrum for one or more models on the same axes.

You can mix sys,line_spec pairs with sys models as in spectrumplot(sys1, sys2, line_spec2, sys3). spectrumplot automatically chooses colors and line styles in the order specified by the ColorOrder and LineStyleOrder properties of the current axes.
spectrumplot (ax, ___) plots into the axes with handle ax. All input arguments described for the previous syntaxes also apply here.
spectrumplot(\qquad , plot_options) uses plot_options to specify options such as plot title, frequency units, etc. All input arguments described for the previous syntaxes also apply here.
spectrumplot(sys,w) uses w to specify the plot frequencies.

- If w is specified as a 2 -element cell array, $\{w m i n, ~ w m a x\}$, the plot spans the frequency range \{wmin, wmax\}.
- If w is specified as vector, the spectrum is plotted for the specified frequencies.

Specify w as radians/time_unit, where time_unit must equal sys.TimeUnit.
$\mathrm{h}=$ spectrumplot (__) returns the handle to the spectrum plot. You use the handle to customize the plot. All input arguments described for the previous syntaxes also apply here.

Input Arguments

sys

Identified linear model.

Default:

line_spec

Line style, marker, and color of both the line and marker.
Specify as one-, two-, or three-part string. The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.

For more information, see Chart Line Properties .
ax
Plot axes handle.
Specify as a double-precision value.
You can obtain the current axes handle by using the function, gca.

plot_options

Plot customization options.

Specify as a plot options object.
You use the command, spectrumoptions, to create plot_options. For more information, type help spectrumoptions.
w
Frequency range.
Specify in radians/time_unit, where time_unit must equal sys.TimeUnit.

Output Arguments

h

Plot handle for spectrum plot, returned as a double-precision value.

Examples

Plot Model Output Spectrum for Identified Model

Obtain the identified model.

```
load iddata9 z9
sys = ar(z9,4);
```

Plot the output spectrum for the model.
spectrumplot(sys);

Specify Line Width and Marker Style on Spectrum Plot

Obtain the identified model.

```
load iddata9 z9
sys = ar(z9,4);
```

Specify the line width and marker style for the spectrum plot.

```
spectrumplot(sys,'k*--');
```


The three-part string, ' k *- - ', specifies a dashed line (--). This line is black (k) with star markers (*).

Plot Multiple Models on the Same Axes

Obtain multiple identified models.

```
load iddata9 z9
sys1 = ar(z9,4);
sys2 = ar(z9,2);
```

Plot the output spectrum for both models.
spectrumplot(sys1,'b*-',sys2,'g^:');

```
legend('sys1','sys2');
```


Power Spectrum

Specify Plot Axes for Spectrum Plot

Obtain the axes handle for a plot.

```
load iddata9 z9
sys1 = ar(z9,4);
spectrumplot(sys1);
ax = gca;
```


Power Spectrum

ax is the handle for the spectrum plot axes.
Plot the output spectrum for another model on the specified axes.

```
sys2 = ar(z9,2);
```

hold on;
spectrumplot(ax,sys2,'r*--');
legend('sys1','sys2');

Power Spectrum

Specify Plot Options on Spectrum Plot

Obtain the identified model.

```
load iddata9 z9
sys = ar(z9,4);
```

Specify the plot options.

```
plot_options = spectrumoptions;
plot_options.FreqUnits = 'Hz';
plot_options.FreqScale = 'linear';
plot_options.Xlim = {[0 20]};
plot_options.MagUnits = 'abs';
```

Plot the output spectrum for the model.
spectrumplot(sys,plot_options);

Specify Spectrum Plot Frequency Range

Obtain the identified model.
load iddata9 z9
sys $=\operatorname{ar}(z 9,4)$;
Specify the frequency range for the output spectrum plot for the model.
spectrumplot(sys, $\{1,1000\}$);

Power Spectrum

The 2 -element cell array $\{1,1000\}$ specifies the frequency range from $1 \mathrm{rad} / \mathrm{s}$ to 1000 rad/s.

Get Plot Handle for Spectrum Plot Customization

Obtain the identified model.

```
load iddata9 z9
sys = ar(z9,4);
```

Get the plot handle for the model spectrum plot.
h = spectrumplot(sys);

Power Spectrum

(Optional) Specify the plot options, using the plot handle.
setoptions(h,'FreqUnits','Hz','FreqScale','linear','Xlim', \{[0 20]\},'MagUnits','abs');

See Also

Axes Properties | Chart Line Properties | getoptions | setoptions | showConfidence | spectrum

ss2ss

State coordinate transformation for state-space model

Syntax

```
sysT = ss2ss(sys,T)
```


Description

Given a state-space model sys with equations

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

or the innovations form used by the identified state-space (IDSS) models:

$$
\begin{aligned}
\frac{d x}{d t} & =A x+B u+K e \\
y & =C x+D u+e
\end{aligned}
$$

(or their discrete-time counterpart), ss2ss performs the similarity transformation $\bar{x}=T x$ on the state vector x and produces the equivalent state-space model sysT with equations.

$$
\begin{aligned}
\dot{\bar{x}} & =T A T^{-1} \bar{x}+T B u \\
y & =C T^{-1} \bar{x}+D u
\end{aligned}
$$

or, in the case of an IDSS model:

$$
\begin{aligned}
& \dot{\bar{x}}=T A T^{-1} \bar{x}+T B u+T K e \\
& y=C T^{-1} \bar{x}+D u+e
\end{aligned}
$$

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given sys and the state coordinate transformation T. The model sys must be in state-space form and the matrix T must be invertible. ss2ss is applicable to both continuous- and discrete-time models.

Examples

Perform a similarity transform to improve the conditioning of the A matrix.
T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See Also

balreal | canon

ssdata

Access state-space model data

Syntax

```
[a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)
```


Description

[a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array) data A, B, C, D from the state-space model (LTI array) sys. If sys is a transfer function or zero-pole-gain model (LTI array), it is first converted to state space. See ss for more information on the format of state-space model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent explicit form is first derived.

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation). For some systems, setting delays to zero creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, ssdata cannot display the matrices and returns an error. This error does not imply a problem with the model sys itself.
[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.
You can access the remaining LTI properties of sys with get or by direct referencing. For example:
sys.statename
For arrays of state-space models with variable numbers of states, use the syntax:

```
[a,b,c,d] = ssdata(sys,'cell')
```

to extract the state-space matrices of each model as separate cells in the cell arrays a, b, c , and d .

```
See Also
dssdata | get | getdelaymodel | idssdata| set | ss | tfdata| zpkdata
```


ssest

Estimate state-space model using time or frequency domain data

Syntax

```
sys = ssest(data,nx)
sys = ssest(data,nx,Name,Value)
sys = ssest(
```

\qquad

``` ,opt)
sys = ssest(data,init_sys)
sys = ssest(data,init_sys,Name,Value)
sys = ssest(___,opt)
[sys,x0] = ssest(___)
```


Description

sys $=$ ssest (data, $n x$) estimates a state-space model, sys, using time- or frequencydomain data, data. sys is a state-space model of order nx and represents:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

A, B, C, D, and K are state-space matrices. $u(t)$ is the input, $y(t)$ is the output, $e(t)$ is the disturbance and $x(t)$ is the vector of nx states.

All the entries of A, B, C, and K are free estimable parameters by default. D is fixed to zero by default, meaning that there is no feedthrough, except for static systems ($\mathrm{nx}=0$).
sys = ssest(data, nx,Name, Value) estimates the model using the additional options specified by one or more Name,Value pair arguments. Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.
sys = ssest(\qquad , opt) estimates the model using an option set, opt, that specifies options such as estimation objective, handling of initial conditions and numerical search method used for estimation.
sys = ssest(data,init_sys) estimates a state-space model using the dynamic system init_sys to configure the initial parameterization.
sys = ssest(data,init_sys,Name, Value) estimates the model using additional options specified by one or more Name,Value pair arguments.
sys = ssest (__ , opt) estimates the model using an option set, opt. [sys, x0] = ssest (__) returns the value of initial states computed during estimation.

Input Arguments

data
Estimation data.
For time-domain estimation, data must be an iddata object containing the input and output signal values.

For frequency-domain estimation, data can be one of the following:

- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency '

nx

Order of estimated model.
Specify $n x$ as a positive integer. $n x$ may be a scalar or a vector. If $n x$ is a vector, then ssest creates a plot which you can use to choose a suitable model order. The plot shows the Hankel singular values for models of different orders. States with relatively small Hankel singular values can be safely discarded. A default choice is suggested in the plot.

opt

Estimation options.
opt is an options set, created using ssestOptions, that specifies options including:

- Estimation objective
- Handling of initial conditions
- Numerical search method used for estimation

If opt is not specified and init_sys is a previously estimated idss model, the options from init_sys.Report. OptionsUsed are used.

init_sys

Dynamic system that configures the initial parameterization of sys.
If init_sys is an state-space (idss) model, ssest uses the parameter values of init_sys as the initial guess for estimating sys. For information on how to specify idss, see "Estimate State-Space Models with Structured Parameterization". Constraints on the parameters of init_sys, such as fixed coefficients and minimum/maximum bounds are honored in estimating sys.

If init_sys is not an idss model, the software first converts init_sys to an idss model. ssest uses the parameters of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses and constraints for the A, B, C, D and K matrices.

To specify an initial guess for, say, the A matrix of init_sys, set init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the B matrix of init_sys:

- Set init_sys.Structure.b. Minimum to the minimum B matrix value
- Set init_sys.Structure.b. Maximum to the maximum B matrix value
- Set init_sys.Structure.b.Free to indicate if entries of the B matrix are free parameters for estimation

You can similarly specify the initial guess and constraints for the other matrices.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
'Ts' - Sample time
sample time of data (data. Ts) (default) | positive scalar | 0
Sample time, specified as a positive scalar.
For continuous-time models, use $T s=0$. For discrete-time models, specify Ts as a positive scalar whose value is equal to the data sampling time.

Default: 0 (continuous-time)

'InputDelay' - Input delays

0 (default) | scalar | vector
Input delay for each input channel, specified as a numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

'Form' - Type of canonical form

'free' (default) | 'modal' | 'companion' | 'canonical'
Type of canonical form of sys.
Form is a string that takes one of the following values:

- 'modal' - Obtain sys in modal form.
- 'companion ' - Obtain sys in companion form.
- 'free' - All entries of the A, B and C matrices are treated as free.
- 'canonical' - Obtain sys in the observability canonical form [1].

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

For more information, see "Estimate State-Space Models with Canonical Parameterization".

'Feedthrough ' - Direct feedthrough from input to output
 0 (default) | 1 | logical vector

Direct feedthrough from input to output, specified as a logical vector of length $N u$, where $N u$ is the number of inputs. If Feedthrough is specified as a logical scalar, it is applied to all the inputs.

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

'DisturbanceModel' - Specify whether to estimate the K matrix
 'estimate' (default) | 'none

Specify whether to estimate the K matrix which specifies the noise component, specified as one of the following strings:

- 'none ' - Noise component is not estimated. The value of the K matrix is fixed to zero value.
- 'estimate ' - The K matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency-domain data.
Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

Output Arguments

sys

Identified state-space model.
sys is an idss model, which encapsulates the identified state-space model.

x0

Initial states computed during the estimation.

If data contains multiple experiments, then x 0 is an array with each column corresponding to an experiment.

This value is also stored in the Parameters field of the model's Report property.

Examples

Determine Optimal Estimated Model Order

Estimate a state-space model for measured input-output data. Determine the optimal model order within a given range.

Obtain measured input-output data.

```
load icEngine.mat;
data = iddata(y,u,0.04);
```

data is an iddata object containing 1500 input-output data samples. The data sampling time is 0.04 seconds.

Estimate a state-space model for measured input-output data. Determine the optimal model order within a given model order range.

```
nx = 1:10;
sys = ssest(data,nx);
```

A plot that shows the Hankel singular values (SVD) for models of the orders specified by nx appears.

States with relatively small Hankel singular values can be safely discarded. The default order choice is 2 .

Select the model order in the Model Order drop-down list and click Apply.

Identify State-Space Model With Input Delay

Identify a state-space model containing an input delay for given data.
Load time-domain system response data, and use it to identify a state-space model for the system. Specify a known input delay for the model.
load iddata7 z7
nx = 4;
sys $=$ ssest(z7(1:300),nx, 'InputDelay',[2;0])
z7 is an iddata object that contains time domain system response data.
nx specifies a fourth-order identified state-space model.

The name-value input argument pair 'InputDelay ', [2;0] specifies an input delay of 2 seconds for the first input and 0 seconds for the second output.
sys is an idss model containing the identified state-space model.

Estimate State-Space Model Using Regularization

Obtain a regularized 15th order state-space model for a 2 nd order system from a narrow bandwidth signal.

Load data.
load regularizationExampleData eData;
Estimate an unregularized state-space model.

```
trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);
m = ssest(eData, 15, 'form', 'modal', 'DisturbanceModel', 'none');
```

Estimate a regularized state-space model.

```
opt = ssestOptions;
opt.Regularization.Lambda = 9.7;
mr = ssest(eData, 15, 'form','modal','DisturbanceModel','none', opt);
```

Compare the model outputs with data.
compare(eData,m,mr);
Compare the impulse responses of the models.
impulse(trueSys, m, mr, 50);

Estimate State-Space Model Using Regularized Impulse Response Model

Identify a 15 th order state-space model using regularized impulse response estimation.
Load data.

```
load regularizationExampleData eData;
```

Create a transfer function model used for generating the estimation data (true system). trueSys $=\operatorname{idtf([0.02008~0.04017~0.02008],[1-1.561~0.6414],1);~}$

Obtain regularized impulse response (FIR) model.

```
opt = impulseestOptions('RegulKernel', 'DC');
m0 = impulseest(eData, 70, opt);
```

Convert the model into a transfer function model after reducing the order.
$m=$ balred(idss(m0),15);
Obtain a state-space model using regularized reduction of ARX model.

```
m1 = ssregest(eData,15);
```

Compare the impulse responses of the true system, regularized and state-space models. impulse(trueSys, m, m1, 50);

Estimate State-Space Model for Partially Known Model (Structured Estimation)

Estimate a state-space model using measured input-output data. Configure the parameter constraints and initial values for estimation using a state-space model.

Create an idss model to specify the initial parameterization for estimation.
Configure an idss model so that it has no state-disturbance element and only the nonzero entries of the A matrix are estimable. Additionally, fix the values of the B matrix.

```
A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 1 1 1 1];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
Ts = 0;
init_sys = idss(A,B,C,D,K,x0,Ts);
```

Setting all entries of $\mathrm{K}=0$ creates an idss model with no state disturbance element.
Use the Structure property of init_sys to fix the values of some of the parameters.

```
init_sys.Structure.a.Free = (A~=0);
init_sys.Structure.b.Free = false;
init_sys.Structure.k.Free = false;
```

The entries in init_sys.Structure.a.Free determine whether the corresponding entries in init_sys.a are free (identifiable) or fixed. The first line sets
init_sys.Structure.a. Free to a matrix that is true wherever A is nonzero, and false everywhere else. Doing so fixes the value of the zero entries in init_sys.a.

The remaining lines fix all the values in init_sys.b and init_sys. k to the values you specified when you created the model.

Load the measured data and estimate a state-space model using the parameter constraints and initial values specified by init_sys.

```
load iddata2 z2;
sys = ssest(z2,init_sys);
```

sys is an idss model that encapsulates the fourth-order, state-space model estimated for the measured data $z 2$. The estimated parameters of sys successfully satisfy the constraints specified by init_sys.

Model Order Reduction by Estimation

Reduce the order of a model by estimation.
Consider the Simulink model idF14Model. Linearizing this model gives a ninth-order model. However, the dynamics of the model can be captured, without compromising the fit quality too much, using a lower-order model.

Obtain the linearized model.

```
load_system('idF14Model');
io = getlinio('idF14Model');
sys_lin = linearize('idF14Model',io);
```

sys_lin is a ninth-order state-space model with two outputs and one input.
Simulate the step response of the linearized model, and use the data to create an iddata object.

```
Ts = 0.0444;
t = (0:Ts:4.44)';
y = step(sys_lin,t);
data = iddata([zeros(20,2);y],[zeros(20,1); ones(101,1)],Ts);
```

data is an iddata object that encapsulates the step response of sys_lin.
Compare the data to the model linearization.

```
compare(data, sys_lin);
```


Because the data was obtained by simulating the linearized model, there is a 100% match between the data and model linearization response.

Identify a state-space model with a reduced order that adequately fits the data.
Determine an optimal model order.

```
nx = 1:9;
sys1 = ssest(data,nx,'DisturbanceModel','none');
```

A plot showing the Hankel singular values (SVD) for models of the orders specified by $n x$ appears.

States with relatively small Hankel singular values can be safely discarded. The plot suggests using a fifth-order model.

At the MATLAB command prompt, select the model order for the estimated state-space model. Specify the model order as 5 , or press Enter to use the default order value.

Compare the data to the estimated model.

```
compare(data, sys1);
```


sys1 provides a 98.4% fit for the first output and a 97.7% fit for the second output.
Examine the stopping condition for the search algorithm.
sys1.Report.Termination.WhyStop
ans $=$

Maximum number of iterations reached

Create an estimation options set that specifies the 'lm' search method and allows a maximum of 50 search iterations.

```
opt = ssestOptions('SearchMethod','lm');
opt.SearchOption.MaxIter = 50;
opt.Display = 'on';
```

Identify a state-space model using the estimation option set and sys1 as the estimation initialization model.

```
sys2 = ssest(data, sys1, opt);
```

Compare the response of the linearized and the estimated models.
compare(data,sys_lin,sys2);

sys2 provides a 99% fit for the first output and a 98% fit for the second output while using 4 less states than sys_lin.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues $\left(\lambda_{1}, \sigma \pm j \omega, \lambda_{2}\right)$, the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the right-most column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . & 0 & 1 & -\alpha_{1}
\end{array}\right]
$$

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

Algorithms

ssest initializes the parameter estimates using a noniterative subspace approach. It then refines the parameter values using the prediction error minimization approach. See pem for more information.

- "What Are State-Space Models?"
- "Supported State-Space Parameterizations"
- "State-Space Model Estimation Methods"
- "Regularized Estimates of Model Parameters"

References

[1] Ljung, L. System Identification: Theory For the User, Second Edition, Upper Saddle River, N.J: Prentice Hall, 1999.

See Also

canon | iddata | idfrd | idgrey | idss | n4sid | pem | polyest | procest | ssestOptions | ssregest | tfest

Related Examples

- "Estimate State-Space Models at the Command Line"
- "Estimate State-Space Models with Free-Parameterization"
- "Estimate State-Space Models with Canonical Parameterization"

ssestOptions

Option set for ssest

Syntax

opt = ssestOptions
opt = ssestOptions(Name, Value)

Description

opt = ssestOptions creates the default options set for ssest.
opt $=$ ssestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'InitialState'

Specify handling of initial states during estimation.
InitialState requires one of the following values:

- 'zero' - The initial state is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.
- 'backcast' - The initial state is estimated using the best least squares fit.
- 'auto' - ssest chooses the initial state handling method, based on the estimation data. The possible initial state handling methods are 'zero', 'estimate' and 'backcast'.
- Vector of doubles - Specify a column vector of length $N x$, where $N x$ is the number of states. For multi-experiment data, specify a matrix with $N e$ columns, where $N e$ is the number of experiments. The specified values are treated as fixed values during the estimation process.
- Parametric initial condition object (x0obj) - Specify initial conditions by using idpar to create a parametric initial condition object. You can specify minimum/ maximum bounds and fix the values of specific states using the parametric initial condition object. The free entries of xOObj are estimated together with the idss model parameters.

Use this option only for discrete-time state-space models.

Default: 'auto'

'N4Weight'

Weighting scheme used for singular-value decomposition by the N4SID algorithm.
'N4Weight ' requires one of the following values:

- 'MOESP ' - Uses the MOESP algorithm by Verhaegen [2].
- 'CVA' - Uses the Canonical Variable Algorithm by Larimore [1].
- 'SSARX ' - A subspace identification method that uses an ARX estimation based algorithm to compute the weighting.

Specifying this option allows unbiased estimates when using data that is collected in closed-loop operation. For more information about the algorithm, see [6].

- 'auto ' - The estimating function chooses between the MOESP and CVA algorithms.

Default: 'auto'
'N4Horizon'
Forward and backward prediction horizons used by the N4SID algorithm.
' N 4 Horizon ' requires one of the following values:

- A row vector with three elements - [r sy su], where r is the maximum forward prediction horizon. The algorithm uses up to r step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [4] for more information. These numbers can
have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. k is the number of guesses of [r sy su] combinations. If you specify N4Horizon as a single column, $r=s y=s u$ is used.
- 'auto ' - The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: auto

'Focus'

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:

- 'simulation' - Estimates a stable model using the frequency weighting of the transfer function given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This option minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit, and might not result in a stable model. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', except that this method enforces model stability.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

' Display ' - Specify whether to display the estimation progress 'off' (default) | 'on'

Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- ' on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

[^0]Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' OutputOffset' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'OutputWeight'

Specifies criterion used during minimization.
OutputWeight can have the following values:

- 'noise ' — Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This choice is optimal in a statistical sense and leads to maximum likelihood estimates if nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.

Note: OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.

- Positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace $\left(\mathrm{E}^{\prime}{ }^{*} \mathrm{E}^{*} \mathrm{~W}\right) . E$ is the matrix of prediction errors, with
one column for each output, and W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant for only multi-input, multi-output models.

- [] - The software chooses between the 'noise ' or using the identity matrix for W.

Default: []

'Regularization'

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:

- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

Default: 0

- R-Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of $n p$ positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1

- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters
towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

'SearchMethod'

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:

- 'gn ' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J) are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- 'gna' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [3]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where $s v$ are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). gamma is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. gamma is decreased by the factor $2 *$ LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method, so that the next parameter value is - pinv $(H+d * I) * g r a d$ from the previous one. H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from the Optimization Toolbox software. This search method can only handle the Trace criterion.
- 'grad ' - The steepest descent gradient search method.
- 'auto' - The algorithm chooses one of the preceding options. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively, at each iteration. The iterations continue until a sufficient reduction in error is achieved.

Default: 'auto'

'SearchOption'

Options set for the search algorithm.

SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'lm', 'grad', or 'auto'

Field Name	Description	
	Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value. Default: 0.01	
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance. Setting MaxIter $=0$ returns the result of the start-up procedure. Use sys.Report.Termination. Iterations to get the actual number of iterations during an estimation, where sys is an idtf model. Default: 20	
Advance	Advanced search settings. Specified as a structure with the following fields:	
	Field Name	Description
	GnPinvCon:	Singular values of the Jacobian matrix that are smaller than GnPinvConst*max (size (J)*norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'. GnPinvConst must be a positive, real value. Default: 10000
	InitGnaTo.	Initial value of gamma. Applicable when SearchMethod is 'gna'.

	Description	
	Field Name	Description
		Default: 0.0001
	LMStartVa	Starting value of search-direction length d in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. Default: 0.001
	LMStep	Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. Default: 2
	MaxBisect	Maximum number of bisections used by the line search along the search direction. Default: 25
	MaxFunEva.	Iterations stop if the number of calls to the model file exceeds this value. MaxFunEvals must be a positive, integer value. Default: Inf
	MinParCha	Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. Default: 0
	RelImprov	Iterations stop if the relative improvement of the criterion function is less than RelImprovement. Rellmprovement must be a positive, integer value. Default: 0
	StepReduc	Suggested parameter update is reduced by the factor StepReduction after each try. This reduction continues until

Field Name	Description	
	Field Name	Description
	either MaxBisections tries are completed or a lower value of the criterion function is obtained. StepReduction must be a positive, real value that is greater than 1. Default: 2	

SearchOption structure when SearchMethod is specified as 'Isqnonlin'

Field Name	Description
TolFun	Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values. The value of TolFun is the same as that of sys.SearchOption. Advanced. TolFun. Default: 1e-5
TolX	Termination tolerance on the estimated parameter values. The value of TolX is the same as that of sys.SearchOption. Advanced. TolX. Default: 1 e-6
MaxIter	Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.
	The value of MaxIter is the same as that of sys.SearchOption. Advanced. MaxIter.
	Default: 20

Field Description Name

Advance Options set for lsqnonlin.
For more information, see the Optimization Options table in "Optimization Options".

Use optimset('lsqnonlin') to create an options set for lsqnonlin, and then modify it to specify its various options.

'Advanced'

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [4].

ErrorThreshold $=0$ disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

The initial condition is estimated when

$$
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
$$

- $y_{\text {meas }}$ is the measured output.
- $y_{p, z}$ is the predicted output of a model estimated using zero initial states.
- $y_{p, e}$ is the predicted output of a model estimated using estimated initial states.

Applicable when InitialState is 'auto'.
Default: 1.05

- DDC - Specifies if the Data Driven Coordinates algorithm [5] is used to estimate freely parameterized state-space models.

Specify DDC as one of the following values:

- 'on' - The free parameters are projected to a reduced space of identifiable parameters using the Data Driven Coordinates algorithm.
- 'off' - All the entries of A, B, and C updated directly using the chosen SearchMethod.

Default: ' on '

Output Arguments

opt

Option set containing the specified options for ssest.

Examples

Create Default Options Set for State Space Estimation

```
opt = ssestOptions;
```


Specify Options for State Space Estimation

Create an options set for ssest using the 'backcast' algorithm to initialize the state and set the Display to 'on'.

```
opt = ssestOptions('InitialState','backcast','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = ssestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';
```


References

[1] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control." Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596-604, 1990.
[2] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica, Vol. 30, No. 1, 1994, pp. 61-74.
[3] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates." Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[4] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[5] McKelvey, T., A. Helmersson,, and T. Ribarits. "Data driven local coordinates for multivariable linear systems and their application to system identification." Automatica, Volume 40, No. 9, 2004, pp. 1629-1635.
[6] Jansson, M. "Subspace identification and ARX modeling." 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, 2003.

See Also

ssest

ssform

Quick configuration of state-space model structure

Syntax

```
sys1 = ssform(sys,Name,Value)
```


Description

sys1 = ssform(sys,Name, Value) specifies the type of parameterization and whether feedthrough and disturbance dynamics are present for the state-space model sys using one or more Name,Value pair arguments.

Input Arguments

sys

State-space model

Default:

Name-Value Pair Arguments

Specify comma-separated pairs of Name,Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes
(' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'Form'

Specify structure of A, B and C matrices. Must be one of the following strings:

- 'free'

All entries of A, B, C are set free

- 'companion'

Companion form of the model where the characteristic polynomial appears in the farright column of the state matrix A

- 'modal'

Modal decomposition form, where the state matrix A is block diagonal. Each block corresponds to a real or complex-conjugate pair of poles.

You cannot use this value for models with repeated poles.

- 'canonical'

Observability canonical form of A, B, and C matrices, as described in [1].

Default:

'Feedthrough'

Specify whether the model has direct feedthrough from the input $u(t)$ to the output $y(t)$, (whether the elements of the matrix D are nonzero).

Must be a logical vector (true or false) of length equal to the number of inputs ($N u$).
Feedthrough(i) = false sets sys.Structure.d.Value(: i) to zero and sys.Structure.d.Free(: i) to false.

Feedthrough(i) = true sets sys.Structure.d.Free(: i) to true.

Note: Specifying this option for a previously estimated model causes the model parameter covariance information to be lost. Use translatecov to recompute the covariance.

Default:

'DisturbanceModel'

Specify whether to estimate the noise component of the model. Must be one of the following strings:

```
- 'none'
```

The value of the K matrix is fixed to zero.

- 'estimate'

The K matrix is treated as a free parameter

Note: Specifying this option for a previously estimated model causes the model parameter covariance information to be lost. Use translatecov to recompute the covariance.

Default:

Output Arguments

sys1

State-space model with configured parameterization, feedthrough, and disturbance dynamics

Examples

Convert a State-Space Model to Canonical Form

Convert a state-space model to canonical form.
Create a state-space model.
rng('default');
A = randn(2)-2*eye(2);
$B=r a n d n(2,1)$;
C $=$ randn(1,2);
D = 0;
K = randn $(2,1)$;
model = idss(A,B,C,D,K,'Ts',0);
The state-space model has free parameterization and no feedthrough.
Convert the model to observability canonical form.

```
model1 = ssform(model, 'Form', 'canonical');
```


Estimate State-Space Model Parameters in Canonical Form with Feedthrough

Estimate state-space model parameters in canonical form with feedthrough.
Load the estimation data.

```
load iddata1 z1;
```

Create a state-space model.

```
rng('default');
```

$A=r a n d n(2)-2^{*} \operatorname{eye}(2)$;
$B=r a n d n(2,1)$;
$C=r a n d n(1,2)$;
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

The state-space model has free parameterization and no feedthrough.
Convert the model to observability canonical form and specify to estimate its feedthrough behavior.

```
model1 = ssform(model, 'Form', 'canonical', 'Feedthrough', true);
```

Estimate the parameters of the model.

```
model2 = ssest(z1, model1);
```

- "Estimate State-Space Models at the Command Line"

Alternatives

Use the Structure property of an idss model to specify the parameterization, feedthrough, and disturbance dynamics by modifying the Value and Free attributes of the A, B, C, D and K parameters.

More About

- "Supported State-Space Parameterizations"

References

[1] Ljung, L. System Identification: Theory For the User, Second Edition, Appendix 4A, pp 132-134, Upper Saddle River, N.J: Prentice Hall, 1999.

See Also
idss | n4sid | ssest

ssregest

Estimate state-space model by reduction of regularized ARX model

Syntax

```
sys = ssregest(data,nx)
sys = ssregest(data,nx,Name,Value)
sys = ssregest(
```

\qquad

``` , opt)
[sys, \(x 0\) ] = ssregest (___)
```


Description

sys $=$ ssregest(data, $n x$) estimates a state-space model by reduction of a regularized ARX model.
sys = ssregest(data, nx , Name, Value) specifies additional options using one or more Name,Value pair arguments.
sys = ssregest(\qquad , opt) specifies estimation options that configure the estimation objective, ARX orders and order reduction options. This syntax can include any of the input argument combinations in the previous syntaxes.
[sys, x0] = ssregest(\qquad) returns the value of initial states computed during estimation. This syntax can include any of the input argument combinations in the previous syntaxes.

Examples

Estimate a State-Space Model by Reduction of Regularized ARX Model

Load estimation data.
load iddata2 z2;
$z 2$ is an iddata object that contains time-domain system response data.

Identify a third-order state-space model.
sys = ssregest(z2,3);

Estimate State-Space Model With Input Delay

Load estimation data.
load iddata2 z2
Estimate a third-order state-space model with input delay.
sys = ssregest(z2,3,'InputDelay',2);

Configure the ARX Orders and Estimation Focus

Load estimation data.
load iddata2 z2;
Specify the order of the regularized ARX model used by the software during estimation. Also, set the estimation focus to simulation.

```
opt = ssregestOptions('ARXOrder',[100 100 1],'Focus','simulation');
```

Identify a third-order state-space model.
sys = ssregest(z2,3,opt);

Return Initial State Values Computed During Estimation

Load estimation data.
load iddata2 z2;
Obtain the initial state values when identifying a third-order state-space model.
[sys,x0] = ssregest(z2,3);
Compare State-Space Models Estimated Using Regularized Impulse Response and Regularized Reduction of ARX Model

Load data.
load regularizationExampleData eData;

Create a transfer function model used for generating the estimation data (true system).

```
trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);
```

Obtain regularized impulse response (FIR) model.

```
opt = impulseestOptions('RegulKernel', 'DC');
m0 = impulseest(eData, 70, opt);
```

Convert the model into a transfer function model after reducing the order.
m = balred(idss(m0),15);
Obtain a state-space model using regularized reduction of ARX model.

```
m1 = ssregest(eData,15);
```

Compare the impulse responses of the true system, regularized and state-space models.

```
impulse(trueSys, m, m1, 50);
```


Input Arguments

data - Estimation data
iddata | idfrd | frd
Estimation data, specified as a iddata, idfrd or frd object.
For time-domain estimation, data must be an iddata object containing the input and output signal values.

For frequency-domain estimation, data can be one of the following:

- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency '

The sample time Ts of the iddata object must be nonzero.

nx - Order of estimated model

positive scalar | positive vector | 'best'
Order of the estimated model, specified as a positive scalar or vector.
If $n x$ is a vector, then ssregest creates a plot which you can use to choose a suitable model order. The plot shows the Hankel singular values for models of chosen values in the vector. States with relatively small Hankel singular values can be safely discarded. A default choice is suggested in the plot.

You can also specify $n x=$ 'best', as in ssregest(data, 'best'), in which case the optimal order is chosen automatically in the 1:10 range.

opt - Options set for ssregest ssregestOptions options set

Estimation options for ssregest, specified as an options set you create using ssregestOptions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: sys = ssregest(z2,3,'InputDelay',2) specifies a delay of 2 sampling periods.

```
'Ts ' - Sample time
sample time of data (data.Ts) (default) | positive scalar | 0
```

Sample time of the model, specified as 0 or equal to the sample time of data.
For continuous-time models, use Ts $=0$. For discrete-time models, specify Ts as a positive scalar whose value is equal to the data sampling time.

'InputDelay' - Input delays
 0 (default) | scalar | vector

Input delay for each input channel, specified as a numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For
discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

'Form' - Type of canonical form

'free' (default) | 'modal' | 'companion' | 'canonical'
Type of canonical form of sys, specified as one of the following strings:

- 'modal' - Obtain sys in modal form.
- 'companion' - Obtain sys in companion form.
- 'free' - All entries of the A, B and C matrices are treated as free.
- 'canonical' - Obtain sys in the observability canonical form [1].

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

'Feedthrough ' - Direct feedthrough from input to output
 0 (default) | 1 | logical vector

Direct feedthrough from input to output, specified as a logical vector of length $N u$, where $N u$ is the number of inputs. If Feedthrough is specified as a logical scalar, it is applied to all the inputs.

Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

'DisturbanceModel' - Specify whether to estimate the K matrix
 'estimate' (default) | 'none'

Specify whether to estimate the K matrix which specifies the noise component, specified as one of the following strings:

- 'none ' - Noise component is not estimated. The value of the K matrix is fixed to zero value.
- 'estimate' - The K matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency-domain data.
Use the Form, Feedthrough and DisturbanceModel name-value pair arguments to modify the default behavior of the A, B, C, D, and K matrices.

Output Arguments

sys - Estimated state-space model

 idssEstimated state-space model of order nx, returned as an idss model object. The model represents:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

A, B, C, D, and K are state-space matrices. $u(t)$ is the input, $y(t)$ is the output, $e(t)$ is the disturbance and $x(t)$ is the vector of nx states.

All the entries of A, B, C, and K are free estimable parameters by default. D is fixed to zero by default, meaning that there is no feedthrough, except for static systems ($\mathrm{nx}=0$).

x0 - Initial states computed during estimation

scalar | matrix
Initial states computed during estimation, returned as a scalar. If data contains multiple experiments, then x 0 is a matrix with each column corresponding to an experiment.

This value is also stored in the Parameters field of the model's Report property.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by- 1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues ($\lambda_{1}, \sigma \pm j \omega, \lambda_{2}$), the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the right-most column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . & 0 & 1 & -\alpha_{1}
\end{array}\right]
$$

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

Tips

- ssregest function provides improved accuracy than n4sid for short, noisy data sets.
- For some problems, the quality of fit using n4sid is sensitive to options, such as N4Horizon, whose values can be difficult to determine. In comparison, the quality of fit with ssregest is less sensitive to its options, which makes ssregest simpler to use.

Algorithms

ssregest estimates a regularized ARX model and converts the ARX model to a statespace model. The software then uses balanced model reduction techniques to reduce the state-space model to the specified order.

- "Regularized Estimates of Model Parameters"

References

[1] Ljung, L. System Identification: Theory For the User, Second Edition, Appendix 4A, pp 132-134, Upper Saddle River, N.J: Prentice Hall, 1999.

See Also
arx | arxRegul | balred | n4sid | ssest | ssregestOptions

ssregestOptions

Options set for ssregest

Syntax

```
options = ssregestOptions
```

options = ssregestOptions(Name,Value)

Description

options = ssregestOptions creates a default options set for ssregest.
options = ssregestOptions(Name, Value) specifies additional options using one or more Name,Value pair arguments.

Examples

Create Default Options Set for State-Space Estimation Using Reduction of Regularized ARX Model

```
options = ssregestOptions;
```

Specify Options for State-Space Estimation Using Reduction of Regularized ARX Model
Create an options set for ssregest that fixes the value of the initial states to 'zero'. Also, set the Display to ' on '.

```
opt = ssregestOptions('InitialState','zero','Display','on');
```


Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: opt = ssregestOptions('InitialState','zero') fixes the value of the initial states to zero.

'InitialState' - Specify handling of initial states during estimation 'estimate' (default) | 'zero'

Specify handling of initial states during estimation, specified as one of the following strings:

- 'zero' - The initial state is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.

' ARXOrder ' - ARX model orders

'auto ' (default) | matrix of nonnegative integers
ARX model orders, specified as a matrix of nonnegative integers [na nb nk]. The $\max ($ ARXOrder $)+1$ must be greater than the desired state-space model order (number of states). If you specify a value, it is recommended that you use a large value for nb order. To learn more about ARX model orders, see arx.

'RegulKernel' - Regularizing kernel
 'TC' (default) | 'SE' | 'SS' | 'HF' | 'DI' | 'DC'

Regularizing kernel used for regularized estimates of the underlying ARX model, specified as one of the following strings:

- 'TC' - Tuned and correlated kernel
- 'SE ' - Squared exponential kernel
- 'SS' - Stable spline kernel
- 'HF ' - High frequency stable spline kernel
- 'DI' - Diagonal kernel
- 'DC ' - Diagonal and correlated kernel

For more information, see [1].

'Reduction ' - Options for model order reduction

structure
Options for model order reduction, specified as a structure with the following fields:

- StateElimMethod - State elimination method. Specifies how to eliminate the weakly coupled states (states with smallest Hankel singular values). Specified as one of the following values:

'MatchDC'	Discards the specified states and alters the remaining states to preserve the DC gain.
'Truncate'	Discards the specified states without altering the remaining states. This method tends to product a better approximation in the frequency domain, but the DC gains are not guaranteed to match.

Default: 'Truncate'

- AbsTol, RelTol - Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar values. For an input model G with unstable poles, balred first extracts the stable dynamics by computing the stable/unstable decomposition $G \rightarrow G S+G U$. The AbsTol and RelTol tolerances control the accuracy of this decomposition by ensuring that the frequency responses of G and $G S+G U$ differ by no more than AbsTol + RelTol*abs (G). Increasing these tolerances helps separate nearby stable and unstable modes at the expense of accuracy. See stabsep for more information.

Default: AbsTol = 0; RelTol = 1e-8

- Offset - Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable decomposition, the stable term includes only poles satisfying
- $\operatorname{Re}(s)<-O f f s e t * \max (1,|\operatorname{Im}(s)|)$ (Continuous time)
- $|z|<1$ - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.

Default: 1e-8
'Focus ' - Estimation focus
'prediction' (default) | 'simulation' | vector | matrix | linear system
Estimation focus that defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error, specified as one of the following:

- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. This option focuses on producing a good predictor.
- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This format calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus '. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

'EstCovar ' - Control whether to generate parameter covariance data true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.

If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

'Display ' - Specify whether to display the estimation progress

'off' (default) | 'on'
Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

' InputOffset ' - Remove offset from time-domain input data during estimation [] (default) | vector of positive integers

Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

' Output0ffset ' - Remove offset from time-domain output data during estimation [] (default) | vector

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

'OutputWeight' - Criterion used during minimization

[] (default) | 'noise' | positive semidefinite symmetric matrix
Specifies criterion used during minimization, specified as one of the following:

- 'noise ' - Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates in case no data is available about the variance of the noise. This option uses the inverse of the estimated noise variance as the weighting function.
- Positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace ($E^{\prime} * E^{*} W$). E is the matrix of prediction errors, with one column for each output. W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

- [] - The software chooses between the 'noise ' or using the identity matrix for W.
'Advanced ' - Maximum allowable size of Jacobian matrices and choice of search method structure

Maximum allowable size of Jacobian matrices and choice of search method, specified as a structure with the following fields:

- MaxSize - Maximum allowable size of Jacobian matrices formed during estimation, specified as a large positive number.

Default: 250e3

- SearchMethod - Search method for estimating regularization parameters, specified as one of the following strings:
- 'fmincon': Trust-region-reflective constrained minimizer. In general, 'fmincon' is better than ' gn ' for handling bounds on regularization parameters that are imposed automatically during estimation. Requires Optimization Toolbox software.
- 'gn': Quasi-Newton line search

Default: 'fmincon'

If you do not have the Optimization Toolbox software, the default is 'gn'.

Output Arguments

options - Options set for ssregest
ssregestOptions options set
Estimation options for ssregest, returned as an ssregestOptions options set.

References

[1] T. Chen, H. Ohlsson, and L. Ljung. "On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited", Automatica, Volume 48, August 2012.

See Also

ssregest

stack

Build model array by stacking models or model arrays along array dimensions

Syntax

sys = stack(arraydim,sys1,sys2,...)

Description

sys = stack(arraydim, sys1, sys2, ...) produces an array of dynamic system models sys by stacking (concatenating) the models (or arrays) sys1,sys2, .. along the array dimension arraydim. All models must have the same number of inputs and outputs (the same I/O dimensions), but the number of states can vary. The I/O dimensions are not counted in the array dimensions. For more information about model arrays and array dimensions, see "Model Arrays".

For arrays of state-space models with variable order, you cannot use the dot operator (e.g., sys.a) to access arrays. Use the syntax
[a,b,c,d] = ssdata(sys,'cell')
to extract the state-space matrices of each model as separate cells in the cell arrays a, b, c , and d .

Examples

Example 1

If sys1 and sys2 are two models:

- stack(1, sys1, sys2) produces a 2-by-1 model array.
- stack(2, sys1, sys2) produces a 1-by-2 model array.
- stack(3, sys1, sys2) produces a 1-by-1-by-2 model array.

Example 2

Stack identified state-space models derived from the same estimation data and compare their bode responses.

```
load iddata1 z1
sysc = cell(1,5);
opt = ssestOptions('Focus','simulation');
for i = 1:5
sysc{i} = ssest(z1,i-1,opt);
end
sysArray = stack(1, sysc{:});
bode(sysArray);
```


step

Step response plot of dynamic system

Syntax

```
step(sys)
step(sys,Tfinal)
step(sys,t)
step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,Tfinal)
step(sys1,sys2,...,sysN,t)
y = step(sys,t)
[y,t] = step(sys)
[y,t] = step(sys,Tfinal)
[y,t,x] = step(sys)
[y,t,x,ysd] = step(sys)
[y,...] = step(sys,...,options)
```


Description

step calculates the step response of a dynamic system. For the state space case, zero initial state is assumed. When it is invoked with no output arguments, this function plots the step response on the screen.
step(sys) plots the step response of an arbitrary "dynamic system model" sys. This model can be continuous or discrete, and SISO or MIMO. The step response of multiinput systems is the collection of step responses for each input channel. The duration of simulation is determined automatically, based on the system poles and zeros.
step (sys, Tfinal) simulates the step response from $t=0$ to the final time $t=$ Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (Ts = -1), step interprets Tfinal as the number of sampling periods to simulate.
step (sys, t) uses the user-supplied time vector t for simulation. Express t in the system time units, specified in the TimeUnit property of sys. For discrete-time models,
t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, t should be of the form Ti:dt:Tf, where $d t$ becomes the sample time of a discrete approximation to the continuous system (see "Algorithms" on page 1-1047). The step command always applies the step input at $t=0$, regardless of Ti .

To plot the step response of several modelssys1,..., sysN on a single figure, use

```
step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,Tfinal)
step(sys1,sys2,...,sysN,t)
```

All of the systems plotted on a single plot must have the same number of inputs and outputs. You can, however, plot a mix of continuous- and discrete-time systems on a single plot. This syntax is useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, marker, or all three for each system. For example,

```
step(sys1,'y:',sys2,'g--')
```

plots the step response of sys1 with a dotted yellow line and the step response of sys2 with a green dashed line.

When invoked with output arguments:

```
y = step(sys,t)
[y,t] = step(sys)
[y,t] = step(sys,Tfinal)
[y,t,x] = step(sys)
```

step returns the output response y, the time vector t used for simulation (if not supplied as an input argument), and the state trajectories x (for state-space models only). No plot generates on the screen. For single-input systems, y has as many rows as time samples (length of t), and as many columns as outputs. In the multi-input case, the step responses of each input channel are stacked up along the third dimension of y . The dimensions of y are then
and $y(:,:, j)$ gives the response to a unit step command injected in the j th input channel. Similarly, the dimensions of x are

$$
(\text { length of } t) \times(\text { number of states }) \times(\text { number of inputs })
$$

For identified models (see idlti and idnlmodlel) [y,t,x,ysd] = step(sys) also computes the standard deviation ysd of the response y (ysd is empty if sys does not contain parameter covariance information).
[y,...] = step(sys,..., options) specifies additional options for computing the step response, such as the step amplitude or input offset. Use stepDataOptions to create the option set options.

Examples

Step Response Plot of Dynamic System

Plot the step response of the following second-order state-space model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& y=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

```
a = [-0.5572,-0.7814;0.7814,0];
b = [1,-1;0,2];
c = [1.9691,6.4493];
sys = ss(a,b,c,0);
step(sys)
```


Step Response

The left plot shows the step response of the first input channel, and the right plot shows the step response of the second input channel.

Step Response Plot of Feedback Loop with Delay

Create a feedback loop with delay and plot its step response.

```
s = tf('s');
G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)
```


The system step response displayed is chaotic. The step response of systems with internal delays may exhibit odd behavior, such as recurring jumps. Such behavior is a feature of the system and not software anomalies.

Step Responses of Identified Models with Confidence Regions

Compare the step response of a parametric identified model to a non-parametric (empirical) model/ Also view their 3- σ confidence regions.
load iddata1 z1
sys1 = ssest(z1,4);
parametric model

```
sys2 = impulseest(z1);
non-parametric model
[y1, ~, ~, ysd1] = step(sys1,t);
[y2, ~, ~, ysd2] = step(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')
```


Validate Linearization of Identified Nonlinear ARX Model

Validation the linearization of a nonlinear ARX model by comparing their small amplitude step responses.

```
nlsys = nlarx(z2,[4 3 10],'tree','custom',...
    {'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
        'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);
```

Determine an equilibrium operating point for nlsys corresponding to a steady-state input value of 1 :

```
u0 = 1;
[X,~,r] = findop(nlsys, 'steady', 1);
y0 = r.SignalLevels.Output;
```

Obtain a linear approximation of nlsys at this operating point.

```
sys = linearize(nlsys,u0,X)
```

Now validate the usefulness of sys by comparing its small-amplitude step response to that of nlsys. The nonlinear system nlsys is operating an equilibrium level dictated by ($\mathrm{u} 0, \mathrm{y} 0$). About this steady-state, we introduce a step perturbation of size 0.1. The corresponding response is computed as follows:

```
opt = stepDataOptions;
opt.InputOffset = u0;
opt.StepAmplitude = 0.1;
t = (0:0.1:10)';
ynl = step(nlsys, t, opt);
```

The linear system sys expresses the relationship between the perturbations in input to the corresponding perturbation in output. It is unaware of nonlinear system's equilibrium values. The step response of the linear system is:

```
opt = stepDataOptions;
opt.StepAmplitude = 0.1;
yl = step(sys, t, opt);
```

To compare, add the steady-state offset, y 0 , to the response of the linear system:
plot(t, ynl, t, yl+y0)
legend('Nonlinear', 'Linear with offset')

Step Response of Identified Time-Series Model

Compute the step response of an identified time series model.
A time series model, also called a signal model, is one without measured input signals. The step plot of this model uses its (unmeasured) noise channel as the input channel to which the step signal is applied.

```
load iddata9
sys = ar(z9, 4);
```

y is a model of the form $A y(t)=e(t)$, where $e(t)$ represents the noise channel. For computation of step response, $e(t)$ is treated as an input channel, and is named "e@y1".

```
step(sys)
```


More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Algorithms

Continuous-time models without internal delays are converted to state space and discretized using zero-order hold on the inputs. The sampling period, dt , is chosen
automatically based on the system dynamics, except when a time vector $t=0: d t: T f$ is supplied ($d t$ is then used as sampling period). The resulting simulation time steps t are equisampled with spacing $d t$.

For systems with internal delays, Control System Toolbox software uses variable step solvers. As a result, the time steps t are not equisampled.

References

[1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic equations in control theory," Applied Numerical Mathematics, Vol. 56, Issues 3-4, pp. 574-588.

See Also
impulse | stepDataOptions | initial | lsim | ltiview

stepDataOptions

Options set for step

Syntax

```
opt = stepDataOptions
```

opt = stepDataOptions(Name,Value)

Description

opt = stepDataOptions creates the default options for step.
opt = stepDataOptions(Name, Value) creates an options set with the options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

'InputOffset'

Input signal level for all time $\mathrm{t}<0$, as shown in the next figure.

Default: 0

'StepAmplitude'

Change of input signal level which occurs at time $t=0$, as shown in the previous figure.
Default: 1

Output Arguments

opt

Option set containing the specified options for step.

Examples

Specify Input Offset and Step Amplitude Level

Specify the input offset and amplitude level for step response.

```
sys = tf(1,[1,1]);
opt = stepDataOptions('InputOffset',-1,'StepAmplitude',2);
[y,t] = step(sys,opt)
```


See Also

step

stepinfo

Rise time, settling time, and other step response characteristics

Syntax

```
S = stepinfo(y,t,yfinal)
S = stepinfo(y,t)
S = stepinfo(y)
S = stepinfo(sys)
S = stepinfo(...,'SettlingTimeThreshold',ST)
S = stepinfo(...,'RiseTimeLimits',RT)
```


Description

S = stepinfo(y,t,yfinal) takes step response data (t, y) and a steady-state value yfinal and returns a structure S containing the following performance indicators:

- RiseTime - Rise time
- SettlingTime - Settling time
- SettlingMin - Minimum value of y once the response has risen
- SettlingMax - Maximum value of y once the response has risen
- Overshoot - Percentage overshoot (relative to yfinal)
- Undershoot - Percentage undershoot
- Peak - Peak absolute value of y
- PeakTime - Time at which this peak is reached

For SISO responses, t and y are vectors with the same length NS. For systems with NU inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of performance metrics for each I/O pair.
$S=$ stepinfo (y, t) uses the last sample value of y as steady-state value yfinal. $S=$ stepinfo(y) assumes $t=1: n s$.

S = stepinfo(sys)computes the step response characteristics for an LTI model sys (see tf, zpk, or ss for details).

S = stepinfo(..., 'SettlingTimeThreshold', ST) lets you specify the threshold ST used in the settling time calculation. The response has settled when the error $\mid \mathrm{y}(\mathrm{t})$ - yfinal| becomes smaller than a fraction ST of its peak value. The default value is $\mathrm{ST}=0.02(2 \%)$.

S = stepinfo(...,'RiseTimeLimits',RT) lets you specify the lower and upper thresholds used in the rise time calculation. By default, the rise time is the time the response takes to rise from 10 to 90% of the steady-state value ($\mathrm{RT}=\left[\begin{array}{ll}0.1 & 0.9\end{array}\right]$). Note that RT(2) is also used to calculate SettlingMin and SettlingMax.

Examples

Step Response Characteristics of Fifth-Order System

Create a fifth order system and ascertain the response characteristics.

```
sys = tf([1 5],[1 2 5 7 2]);
S = stepinfo(sys,'RiseTimeLimits',[0.05,0.95])
```

These commands return the following result:
S =
RiseTime: 7.4454
SettlingTime: 13.9378
SettlingMin: 2.3737
SettlingMax: 2.5201
Overshoot: 0.8032 Undershoot: 0

Peak: 2.5201
PeakTime: 15.1869

See Also

step | lsiminfo

stepplot

Plot step response and return plot handle

Syntax

```
h = stepplot(sys)
stepplot(sys,Tfinal)
stepplot(sys,t)
stepplot(sys1,sys2,...,sysN)
stepplot(sys1,sys2,...,sysN,Tfinal)
stepplot(sys1,sys2,...,sysN,t)
stepplot(AX,...)
stepplot(..., plotoptions)
stepplot(..., dataoptions)
```


Description

$\mathrm{h}=$ stepplot(sys) plots the step response of the "dynamic system model" sys. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
For multiinput models, independent step commands are applied to each input channel. The time range and number of points are chosen automatically.
stepplot(sys,Tfinal) simulates the step response from $t=0$ to the final time $t=$ Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (Ts = -1), stepplot interprets Tfinal as the number of sampling intervals to simulate.
stepplot (sys, t) uses the user-supplied time vector t for simulation. Express t in the system time units, specified in the TimeUnit property of sys. For discrete-time
models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuoustime models, t should be of the form Ti:dt:Tf, where $d t$ becomes the sample time of a discrete approximation to the continuous system (see step). The stepplot command always applies the step input at $\mathrm{t}=0$, regardless of Ti .

To plot the step responses of multiple models sys1,sys2,... on a single plot, use:

```
stepplot(sys1,sys2,...,sysN)
stepplot(sys1,sys2,...,sysN,Tfinal)
stepplot(sys1,sys2,...,sysN,t)
```

You can also specify a color, line style, and marker for each system, as in

```
stepplot(sys1,'r',sys2,'y--',sys3,'gx')
```

stepplot (AX, ...) plots into the axes with handle AX.
stepplot(..., plotoptions) customizes the plot appearance using the options set, plotoptions. Use timeOptions to create the options set.
stepplot(..., dataoptions) specifies options such as the step amplitude and input offset using the options set, dataoptions. Use stepDataOptions to create the options set.

Examples

Normalized Response on Step Plot

Generate a step response plot for two dynamic systems.

```
sys1 = rss(3);
sys2 = rss(3);
h = stepplot(sys1,sys2);
```


Step Response

Each step response settles at a different steady-state value. Use the plot handle to normalize the plotted response.

```
setoptions(h,'Normalize','on')
```


Step Response

Now, the responses settle at the same value expressed in arbitrary units.

Step Responses of Identified Models with Confidence Region

Compare the step response of a parametric identified model to a nonparametric (empirical) model, and view their $3-\sigma$ confidence regions. (Identified models require System Identification Toolbox ${ }^{\mathrm{TM}}$ software.)

Identify a parametric and a nonparametric model from sample data.

```
load iddata1 z1
sys1 = ssest(z1,4);
sys2 = impulseest(z1);
```

Plot the step responses of both identified models. Use the plot handle to display the 3-б confidence regions.

```
t = -1:0.1:5;
h = stepplot(sys1,sys2,t);
showConfidence(h,3)
legend('parametric','nonparametric')
```


Step Response

The nonparametric model sys2 shows higher uncertainty.

Step Response of Nonlinear Model

Plot the step response of a nonlinear (Hammerstein-Wiener) model using a starting offset of 2 and step amplitude of 0.5 .

```
load twotankdata
z = iddata(y, u, 0.2, 'Name', 'Two tank system');
sys = nlhw(z, [1 5 3], pwlinear, poly1d);
dataoptions = stepDataOptions('InputOffset', 2, 'StepAmplitude', 0.5);
stepplot(sys,60,dataoptions);
```


More About

Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

See Also
showConfidence | step | getoptions | setoptions

strseq

Create sequence of indexed strings

Syntax

strvec = strseq(STR,INDICES)

Description

strvec $=$ strseq(STR, INDICES) creates a sequence of indexed strings in the string vector strvec by appending the integer values INDICES to the string STR.

Note: You can use strvec to aid in system interconnection. For an example, see the sumblk reference page.

Examples

Create a string vector by indexing the string ' e ' at 1,2 , and 4 .

```
strseq('e',[1 2 4])
```

This command returns the following result:
ans =
'e1'
'e2'
'e4'

See Also
 strcat | connect

struc

Generate model-order combinations for single-output ARX model estimation

Syntax

```
nn = struc(na,nb,nk)
nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu)
```


Description

$n n=$ struc (na, nb, $n k$) generates model-order combinations for single-input ARX model estimation. $n a$ and $n b$ are row vectors that specify range of model orders. $n k$ is a row vector that specifies range of model delays. $n n$ is a matrix that contains all combinations of the orders and delays.

```
nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu) generates model-order
combinations for AR\overline{X}}\mathrm{ model with }nu\mathrm{ input channels.
```


Examples

Generate model-order combinations for single-input ARX model estimation:

```
% na and nb vary between 1 and 2, nk varies between 4 and 5.
NN = struc(1:2,1:2,4:5);
```

Generate model-order combinations, and estimate multi-input ARX model:

```
% Create estimation and validation data sets.
load co2data;
Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);
% Generate model-order combinations for na=2:4,
% nb=2:5 for the first input and 1 or 4 for the second input,
% nk=1:4 for the first input and 0 for the second input.
NN = struc(2:4, 2:5, [1 4], 1:4, 0);
```

```
% Estimate an ARX model for each model order.
V = arxstruc(ze, zv, NN);
% Select a model order.
order=selstruc(V,0);
% Estimate an ARX model of selected order.
M=arx(ze,order);
```


More About

Tips

- Use with arxstruc or ivstruc to compute loss functions for ARX models, one for each model order combination returned by struc.
- "Preliminary Step - Estimating Model Orders and Input Delays"

See Also
 arxstruc | ivstruc | selstruc

Tutorials

- "Estimating Model Orders Using an ARX Model Structure"

systemldentification

Open System Identification app

Syntax

systemIdentification
systemIdentification(session)
systemIdentification(session, path)

Description

systemIdentification opens the System Identification app or brings focus to the app if it is already open.
systemIdentification(session) opens a saved session in the app. If the app is already open, the command merges the contents of the session file with those already present in the app.
systemIdentification(session, path) specifies the path to the session file if the file is not on the MATLAB path.

Examples

Open System Identification App Using Saved Session

Open the System Identification app using a saved session that is not on the MATLAB path. For this example, you must have a session named ex_session.sid saved in a local folder, c: \ident.

```
systemIdentification('ex_session','c:\ident');
```

- "Working with System Identification App"

Input Arguments

session - Session name

string
Session name, specified as a string. A session represents the total progress of your identification process, including any data sets and models in the app. You can save a session to a file with a . sid extension.

path - Path to the saved session file

string
Path to the saved session file, specified as a string.

Alternative Functionality

App

Click the Apps tab of MATLAB desktop. In the Apps section, click System Identification to open the System Identification app.

See Also
identpref | midprefs

Ifdata

Access transfer function data

Syntax

```
[num,den] = tfdata(sys)
[num,den,Ts] = tfdata(sys)
[num,den,Ts, sdnum, sdden]=tfdata(sys)
[num, den,Ts,...]=tfdata(sys,J1,...,Jn)
```


Description

[num, den] = tfdata(sys) returns the numerator(s) and denominator(s) of the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or ZPK models) sys. For single LTI models, the outputs num and den of tfdata are cell arrays with the following characteristics:

- num and den have as many rows as outputs and as many columns as inputs.
- The (i, j) entries num $\{i, j\}$ and den $\{i, j\}$ are row vectors specifying the numerator and denominator coefficients of the transfer function from input j to output i. These coefficients are ordered in descending powers of s or z.

For arrays sys of LTI models, num and den are multidimensional cell arrays with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function form using tf. For more information on the format of transfer function model data, see the $t f$ reference page.

For SISO transfer functions, the syntax
[num,den] = tfdata(sys,'v')
forces tfdata to return the numerator and denominator directly as row vectors rather than as cell arrays (see example below).
[num, den,Ts] = tfdata(sys) also returns the sample time Ts.
[num, den, Ts, sdnum, sdden]=tfdata(sys) also returns the uncertainties in the numerator and denominator coefficients of identified system sys. sdnum $\{i, j\}(k)$ is the 1 standard uncertainty in the value num $\{i, j\}(k)$ and $\operatorname{sdden}\{i, j\}(k)$ is the 1 standard uncertainty in the value den\{i,j\}(k). If sys does not contain uncertainty information, sdnum and sdden are empty ([]).
[num, den, Ts,...]=tfdata(sys,J1,..., Jn) extracts the data for the ($\mathrm{J} 1, \ldots, \mathrm{JN}$) entry in the model array sys.

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
sys.variable

Examples

Example 1

Given the SISO transfer function

```
h = tf([1 1],[\begin{array}{lll}{1}&{2}&{5}\end{array}])
```

you can extract the numerator and denominator coefficients by typing

```
[num,den] = tfdata(h,'v')
num =
    0}10
den =
    1 5
```

This syntax returns two row vectors.
If you turn h into a MIMO transfer function by typing
$H=[h ; t f(1,[11])]$
the command
[num,den] = tfdata(H)
now returns two cell arrays with the numerator/denominator data for each SISO entry. Use celldisp to visualize this data. Type

```
celldisp(num)
```

This command returns the numerator vectors of the entries of H .

```
num{1} =
    0 1 1
num{2} =
    0 1
```

Similarly, for the denominators, type

```
celldisp(den)
den{1} =
    2 5
den{2} =
    1
```


Example 2

Extract the numerator, denominator and their standard deviations for a 2 -input, 1 output identified transfer function.

```
load iddata7
```

transfer function model

```
sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);
```

an equivalent process model

```
sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);
[num1, den1, ~, dnum1, dden1] = tfdata(sys1);
[num2, den2, ~, dnum2, dden2] = tfdata(sys2);
```


See Also
 get | ssdata | tf | zpkdata

ffest

Transfer function estimation

Syntax

```
sys = tfest(data,np)
sys = tfest(data,np,nz)
sys = tfest(data,np,nz,iodelay)
sys = tfest(___,Name,Value)
sys = tfest(data,init_sys)
sys = tfest(___,opt)
```


Description

sys = tfest(data, np) estimates a continuous-time transfer function, sys, using timeor frequency-domain data, data, and contains $n p$ poles. The number of zeros in the sys is $\max (n p-1,0)$.
sys = tfest(data, np,nz) estimates a transfer function containing nz zeros.
sys = tfest(data,np,nz,iodelay) estimates a transfer function with transport delay for input/output pairs iodelay.
sys = tfest(\qquad , Name, Value) uses additional options specified by one or more Name,Value pair arguments. All input arguments described for previous syntaxes also apply here.
sys = tfest(data,init_sys) uses the dynamic system init_sys to configure the initial parameterization of sys.
sys = tfest(\qquad , opt) specifies the estimation behavior using the option set opt. All input arguments described for previous syntaxes also apply here.

Input Arguments

data

Estimation data.
For time domain estimation, data is an iddata object containing the input and output signal values.

Time-series models, which are models that contain no measured inputs, cannot be estimated using tfest. Use ar, arx or armax for time-series models instead.

For frequency domain estimation, data can be one of the following:

- frd or idfrd object that represents recorded frequency response data:
- Complex-values $G\left(e^{\mathrm{i} \omega}\right)$, for given frequencies ω
- Amplitude $|G|$ and phase shift $\varphi=\arg G$ values
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

For multi-experiment data, the sample times and intersample behavior of all the experiments must match.

np

Number of poles in the estimated transfer function.
np is a nonnegative number.
For systems that are multiple-input, or multiple-output, or both:

- To use the same number of poles for all the input/output pairs, specify np as a scalar.
- To use different number of poles for the input/output pairs, specify np as an $n y$-by-nu matrix. $n y$ is the number of outputs, and $n u$ is the number of inputs.

nz

Number of zeros in the estimated transfer function.
nz is a nonnegative number.
For systems that are multiple-input, or multiple-output, or both:

- To use the same number of zeros for all the input/output pairs, specify nz as a scalar.
- To use a different number of zeros for the input/output pairs, specify nz as an $n y$ -by- $n u$ matrix. $n y$ is the number of outputs, and $n u$ is the number of inputs.

For a continuous-time model, estimated using discrete-time data, set $n z<=n p$.

iodelay

Transport delay.
For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property of data. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with $n y$ outputs and $n u$ inputs, set iodelay to an $n y$-by- $n u$ array. Each entry of this array is a numerical value that represents the transport delay for the corresponding input/output pair. You can also set iodelay to a scalar value to apply the same delay to all input/output pairs.

The specified values are treated as fixed delays.
iodelay must contain either nonnegative numbers or NaNs . Use NaN in the iodelay matrix to denote unknown transport delays.

Use [] or 0 to indicate that there is no transport delay.

opt

Estimation options.
opt is an options set, created using tfestOptions, that specifies estimation options including:

- Estimation objective
- Handling of initial conditions
- Numerical search method to be used in estimation

init_sys

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idtf model, tfest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for the numerator, denominator and transport lag.

To specify an initial guess for, say, the numerator of init_sys, set init_sys.Structure. num. Value to the initial guess.

To specify constraints for, say, the numerator of init_sys:

- Set init_sys.Structure.num. Minimum to the minimum numerator coefficient values
- Set init_sys.Structure. num. Maximum to the maximum numerator coefficient values
- Set init_sys.Structure.num. Free to indicate which numerator coefficients are free for estimation

You can similarly specify the initial guess and constraints for the denominator and transport lag.

If init_sys is not an idtf model, the software first converts init_sys to a transfer function. tfest uses the parameters of the resulting model as the initial guess for estimation.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

'Ts'

Sampling time.
Use the following values for Ts:

- 0 - Continuous-time model.
- data.Ts - Discrete-time model. In this case, np and nz refer to the number of roots of $z^{\wedge}-1$ for the numerator and denominator polynomials.

Default: 0

'InputDelay'

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0

'Feedthrough'

Feedthrough for discrete-time transfer function. Must be a $N y$-by- $N u$ logical matrix. Use a scalar to specify a common value across all channels.

A discrete-time model with 2 poles and 3 zeros takes the following form:

$$
H z^{-1}=\frac{b 0+b 1 z^{-1}+b 2 z^{-2}+b 3 z^{-3}}{1+a 1 z^{-1}+a 2 z^{-2}}
$$

When the model has direct feedthrough, b0 is a free parameter whose value is estimated along with the rest of the model parameters b1, b2, b3, a1, a2. When the model has no feedthrough, b0 is fixed to zero.

Default: false ($N y, N u$)

Output Arguments

sys

Identified transfer function.
sys is an idtf model that encapsulates the identified transfer function.

Examples

Specify Number of Poles in Estimated Transfer Function

Load time-domain system response data and use it to estimate a transfer function for the system.

```
load iddata1 z1;
```

np = 2;
sys = tfest(z1,np);
$z 1$ is an iddata object that contains time-domain, input-output data.
np specifies the number of poles in the estimated transfer function.
sys is an idtf model containing the estimated transfer function.
To see the numerator and denominator coefficients of the resulting estimated model sys, enter:
sys.num
sys.den
To view the uncertainty in the estimates of the numerator and denominator and other information, use tfdata.

Specify Number of Poles and Zeros in Estimated Transfer Function

Load time domain system response data and use it to estimate a transfer function for the system.

```
load iddata2 z2;
np = 2;
nz = 1;
sys = tfest(z2,np,nz);
```

z2 is an iddata object that contains time domain system response data.
$n p$ and $n z$ specify the number of poles and zeros in the estimated transfer function, respectively.
sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function Containing Known Transport Delay

Load time domain system response data and use it to estimate a transfer function for the system. Specify a known transport delay for the transfer function.

```
load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sys = tfest(z2,np,nz,iodelay);
```

$z 2$ is an iddata object that contains time domain system response data.
$n p$ and $n z$ specify the number of poles and zeros in the estimated transfer function, respectively.
iodelay specifies the transport delay for the estimated transfer function as 0.2 seconds.
sys is an idtf model containing the estimated transfer function, with ioDelay set to 0.2 seconds.

Estimate Transfer Function Containing Unknown Transport Delay

Load time domain system response data and use it to estimate a transfer function for the system. Specify an unknown transport delay for the transfer function.

```
load iddata2 z2;
np = 2;
nz = 1;
iodelay = NaN;
sys = tfest(z2,np,nz,iodelay);
```

z2 is an iddata object that contains time domain system response data.
$n p$ and $n z$ specify the number of poles and zeros in the estimated transfer function, respectively.
iodelay specifies the transport delay for the estimated transfer function. iodelay = NaN denotes the transport delay as an unknown parameter to be estimated.
sys is an idtf model containing the estimated transfer function, whose ioDelay is estimated using data.

Estimate Discrete-Time Transfer Function With No Feedthrough

Load time-domain system response data.

```
load iddata2 z2;
```

$z 2$ is an iddata object that contains time domain system response data.
Estimate a transfer function with a sample time and known transport delay

```
np = 2;
nz = 1;
iodelay = 2;
Ts = 0.1;
sysd = tfest(z2,np,nz,iodelay,'Ts',Ts);
```

By default, the model has no feedthrough.

Estimate Discrete-Time Transfer Function With Feedthrough

Estimate a discrete-time transfer function whose numerator polynomial has a nonzero leading coefficient.

```
load iddata5 z5
np = 3;
nz = 1;
model = tfest(z5,np,nz,'ts',z5.ts,'Feedthrough',true);
```


Analyze the Origin of Delay in Measured Data

Compare two discrete-time models with and without feedthrough and transport delay.

If there is a delay from the measured input to output, it can be attributed to a lack of feedthrough or to a true transport delay. For discrete-time models, absence of feedthrough corresponds to a lag of 1 sample between the input and output. Estimating a model with Feedthrough $=$ false and ioDelay $=0$ thus produces a discretetime system that is equivalent to a system with Feedthrough = true and ioDelay $=1$. Both systems show the same time- and frequency-domain responses, for example, on step and Bode plots. However, you get different results if you reduce these models using balred or convert them to their continuous-time representation. Therefore, you should check if the observed delay should be attributed to transport delay or to a lack of feedthrough.

Estimate a discrete-time model with no feedthrough.

```
load iddata1 z1
```

np = 2;
nz = 2;
model1 $=$ tfest(z1, np, nz, 'Ts', z1.Ts);
model1 has a transport delay of 1 sample and its ioDelay property is 0 . Its numerator polynomial begins with z^{-1}.

Estimate another discrete-time model with feedthrough and 1 sample input-output delay.

```
model2 = tfest(z1, np, nz-1, 1, 'Ts', z1.Ts, 'Feedthrough', true);
```

Compare the Bode response of the models.

```
bode(model1,model2);
```


Bode Diagram

The equations for model1 and model2 are equivalent, but the transport delay of model2 has been absorbed into the numerator of model1.

Convert the models to continuous time, and compare their Bode responses.
bode(d2c(model1), d2c(model2));

Bode Diagram

As the plot shows, the Bode responses of the two models do not match when you convert them to continuous time.

Estimate MISO Discrete-Time Transfer Function with Feedthrough and Delay Specifications for Individual Channels

Estimate a 2-input, 1-output discrete-time transfer function with a delay of 2 samples on first input and zero seconds on the second input. Both inputs have no feedthrough.

Split data into estimation and validation data sets.
load iddata7 z7
ze = z7(1:300);
zv = z7(200:400);

Estimate a 2-input, 1-output transfer function with 2 poles and 1 zero for each input-tooutput transfer function.

```
Lag = [2; 0];
```

Ft = [false, false];
model = tfest(ze, 2, 1, 'Ts', z7.Ts, 'Feedthrough', Ft, 'InputDelay', Lag);

Choice of Feedthrough dictates whether the leading numerator coefficient is zero (no feedthrough) or not (nonzero feedthrough). Delays are expressed separately using InputDelay or ioDelay property. This example uses InputDelay to express the delays.

Validate the estimated model. Exclude the data outliers for validation.

```
I = 1:201; I(114:118) = [];
opt = compareOptions('Samples',I);
compare(zv, model, opt)
```


Estimate Transfer Function Model Using Regularization

Identify a 15 th order transfer function model from data collected by simulating a highorder system.

Load data.
load regularizationExampleData mOsimdata;
Estimate an unregularized transfer function model.
m = tfest(mOsimdata, 15);
Estimate a regularized transfer function model.

```
opt = tfestOptions;
opt.Regularization.Lambda = 0.02632;
mr = tfest(m0simdata, 15, opt);
```

Compare the model outputs with data.

```
compare(mOsimdata, m, mr);
```


Estimate Transfer Function Model Using Regularized Impulse Response Model

Identify a 15 th order transfer function model by using regularized impulse response estimation

Load data.
load regularizationExampleData mOsimdata;
Obtain regularized impulse response (FIR) model.

```
opt = impulseestOptions('RegulKernel', 'DC');
m0 = impulseest(m0simdata, 70, opt);
```

Convert model into a transfer function model after reducing order to 15 .

```
m = idtf(balred(idss(m0),15));
```

Compare the model output with data.

```
compare(mOsimdata, m);
```


Specify Estimation Options

Create the options set for tfest.

```
opt = tfestOptions('InitMethod', 'n4sid', 'Display', 'on', 'SearchMethod','lsqnonlin')
``` opt specifies that the initialization method as 'n4sid', and the search method as 'lsqnonlin'. It also specifies that the loss-function values for each iteration be shown.

Load time domain system response data and use it to estimate a transfer function for the system. Specify the estimation options using opt.
```

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;

```
```

sysc = tfest(z2,np,nz,iodelay,opt);

```
\(z 2\) is an iddata object that contains time domain system response data.
\(n p\) and \(n z\) specify the number of poles and zeros in the estimated transfer function, respectively.
iodelay specifies the transport delay for the estimated transfer function as 0.2 seconds.
opt specifies the estimation options.
sys is an idtf model containing the estimated transfer function.

\section*{Specify Model Properties of the Estimated Transfer Function}

Load time domain system response data, and use it to estimate a transfer function for the system. Specify the input delay for the estimated transfer function.
```

load iddata2 z2;
np = 2;
nz = 1;
input_delay = 0.2;
sys = tfest(z2,np,nz,'InputDelay',input_delay)

```
\(z 2\) is an iddata object that contains time domain system response data.
\(n p\) and \(n z\) specify the number of poles and zeros in the estimated transfer function, respectively.
input_delay specifies the input delay for the estimated transfer function as 0.2 seconds.
sys is an idtf model containing the estimated transfer function with an input delay of 0.2 seconds.

\section*{Convert Frequency Response Data (FRD) into Transfer Function}

This example shows how to convert frequency-response data into transfer function.
This example requires a Control System Toolbox license.
Obtain frequency response data.
For example, use bode to obtain the magnitude and phase response data for the following system:
\[
H(s)=\frac{s+0.2}{s^{3}+2 s^{2}+s+1}
\]

Use 100 frequency points, ranging from \(0.1 \mathrm{rad} / \mathrm{s}\) to \(10 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data. Use frd to create a frequency response data object.
```

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[$$
\begin{array}{llll}{1}&{2}&{1}&{1]),freq);}\end{array}
$$]=\mp@code{l}
data = frd(mag.*exp(1j*phase*pi/180),freq);

```

Estimate a transfer function using data.
```

np = 3;
nz = 1;
sys = tfest(data,np,nz);

```
\(n p\) and \(n z\) specify the number of poles and zeros in the estimated transfer function, respectively.
sys is an idtf model containing the estimated transfer function.

\section*{Estimate Transfer Function with Transport Delay to Fit Given Frequency Response Data}

Estimate a transfer function to fit a given frequency response data (FRD) containing additional phase roll off induced by input delay.

This example requires a Control System Toolbox license.
Obtain frequency response data.
For this example, use bode to obtain the magnitude and phase response data for the following system:
\[
H(s)=e^{-.5 s} \frac{s+0.2}{s^{3}+2 s^{2}+s+1}
\]

Use 100 frequency points, ranging from \(0.1 \mathrm{rad} / \mathrm{s}\) to \(10 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data. Use frd to create a frequency response data object.
```

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[$$
\begin{array}{llll}{1}&{2}&{1}&{1],'InputDelay',.5),freq);}\end{array}
$$]

```
```

data = frd(mag.*exp(1j*phase*pi/180),freq);

```
data is an iddata object that contains frequency response data for the described system.
Estimate a transfer function using data. Specify an unknown transport delay for the estimated transfer function.
```

np = 3;
nz = 1;
iodelay = NaN;
sys = tfest(data,np,nz,iodelay)

```
\(n p\) and \(n z\) specify the number of poles and zeros in the estimated transfer function, respectively.
iodelay specifies an unknown transport delay for the estimated transfer function.
sys is an idtf model containing the estimated transfer function.

\section*{Specify Estimated Transfer Function Model Structure and Coefficient Constraints}

Load time domain data.
load iddata1 z1;
z1.y = cumsum(z1.y);
cumsum integrates the output data of \(z 1\). The estimated transfer function should therefore contain an integrator.

Create a transfer function model with the expected structure.
init_sys = idtf([100 1500],[10 10 10 0]);
int_sys is an idtf model with three poles and one zero. The denominator coefficient for the \(\mathbf{S}^{\wedge} 0\) term is zero. Therefore, int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer function model. To do so, configure fields in the Structure property:
```

init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;

```

The constraints specify that the numerator and denominator coefficients are nonnegative. Additionally, the last element of the denominator coefficients (associated
with the \(S^{\wedge} 0\) term) is not an estimable parameter. This constraint forces one of the estimated poles to be at \(\mathrm{s}=0\).

Create an estimation option set that specifies using the Levenberg-Marquardt search method.
```

opt = tfestOptions('SearchMethod', 'lm');

```

Estimate a transfer function for z 1 using init_sys and the estimation option set.
```

sys = tfest(z1,init_sys,opt);

```
tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally, the estimation is constrained by the constraints you specify in the Structure property of init_sys. The resulting idtf model sys contains the parameter values that result from the estimation.

\section*{Estimate Transfer Function with Known Transport Delays for Multiple Inputs}

Load time domain system response data.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

```
data is an iddata object and has a sample rate of 0.5 seconds.
Specify the search method as gna. Also specify the maximum search iterations and input/ output offsets.
```

opt = tfestOptions('SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

```
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input offset and the output offset.

Estimate a transfer function using the measured data and the estimation option set. Specify the transport delays from the inputs to the output.
```

np = 3;
nz = 1;
iodelay = [2 5];

```
```

sys = tfest(data,np,nz,iodelay,opt);

```
iodelay specifies the input to output delay from the first and second inputs to the output as 2 seconds and 5 seconds, respectively.
sys is an idtf model containing the estimated transfer function.

\section*{Estimate Transfer Function with Known and Unknown Transport Delays}

Load time domain system response data and use it to estimate a transfer function for the system. Specify the known and unknown transport delays.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

```
data is an iddata object and has a sample rate of 0.5 seconds.
Specify the search method as gna. Also specify the maximum search iterations and input/ output offsets.
```

opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

```
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input/output offsets.

Estimate the transfer function. Specify the unknown and known transport delays.
```

np = 3;
nz = 1;
iodelay = [2 nan];
sys = tfest(data,np,nz,iodelay,opt)

```
iodelay specifies the transport delay from the first input to the output as 2 seconds.
Using NaN specifies the transport delay from the second input to the output as unknown.
sys is an idtf model containing the estimated transfer function.

\section*{Estimate Transfer Function with Unknown, Constrained Transport Delays}

Create a transfer function model with the expected numerator and denominator structure and delay constraints.

In this example, the experiment data consists of two inputs and one output. Both transport delays are unknown and have an identical upper bound. Additionally, the transfer functions from both inputs to the output are identical in structure.
```

init_sys = idtf(NaN(1,2),[1, NaN(1,3)],'ioDelay',NaN);
init_sys.Structure(1).ioDelay.Free = true;
init_sys.Structure(1).ioDelay.Maximum = 7;

```
init_sys is an idtf model describing the structure of the transfer function from one input to the output. The transfer function consists of one zero, three poles and a transport delay. The use of NaN indicates unknown coefficients.
init_sys.Structure(1).ioDelay.Free = true indicates that the transport delay is not fixed.
init_sys.Structure(1).ioDelay.Maximum = 7 sets the upper bound for the transport delay to 7 seconds.

Specify the transfer function from both inputs to the output.
```

init_sys = [init_sys, init_sys];

```

Load time domain system response data and use it to estimate a transfer function.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);
opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;
sys = tfest(data,init_sys,opt)

```
data is an iddata object and has a sample rate of 0.5 seconds.
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input offset and the output offset.
sys is an idtf model containing the estimated transfer function.
Analyze the estimation result by comparison.
```

opt2 = compareOptions;
opt2.InputOffset = opt.InputOffset;

```
```

opt2.OutputOffset = opt.OutputOffset;
compare(data, sys, opt2)

```

\section*{Estimate Transfer Function Containing Different Number of Poles for Input/Output Pairs}

Estimate a multiple-input, single-output transfer function containing different number of poles for input/output pairs for given data.

This example requires a Control System Toolbox license.
Obtain frequency response data.
For example, use frd to frequency response data model for the following system:
\[
G=\left[\begin{array}{c}
e^{-4 s} \frac{s+2}{s^{3}+2 s^{2}+4 s+5} \\
e^{-0.6 s} \frac{5}{s^{4}+2 s^{3}+s^{2}+s}
\end{array}\right]
\]

Use 100 frequency points, ranging from \(0.01 \mathrm{rad} / \mathrm{s}\) to \(100 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data.
```

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 0]},0,'ioDelay',[4 .6]);
data = frd(G,logspace(-2,2,100));

```
data is an frd object containing the continuous-time frequency response for \(G\).
Estimate a transfer function for data.
```

np = [3 4];
nz = [1 0];
iodelay = [4 .6];
sys = tfest(data,np,nz,iodelay);

```
np specifies the number of poles in the estimated transfer function. The first element of np indicates that the transfer function from the first input to the output contains 3 poles. Similarly, the second element of np indicates that the transfer function from the second input to the output contains 4 poles.
\(n z\) specifies the number of zeros in the estimated transfer function. The first element of \(n z\) indicates that the transfer function from the first input to the output contains 1 zero.

Similarly, the second element of \(n p\) indicates that the transfer function from the second input to the output does not contain any zeros.
iodelay specifies the transport delay from the first input to the output as 4 seconds. The transport delay from the second input to the output is specified as 0.6 seconds.
sys is an idtf model containing the estimated transfer function.

\section*{Estimate Transfer Function for Unstable System}

Estimate a transfer function describing an unstable system for given data.
This example requires a Control System Toolbox license.
Obtain frequency response data.
For example, use frd to frequency response data model for the following system:
\[
G=\left[\begin{array}{c}
\frac{s+2}{s^{3}+2 s^{2}+4 s+5} \\
\frac{5}{s^{4}+2 s^{3}+s^{2}+s+1}
\end{array}\right]
\]

Use 100 frequency points, ranging from \(0.01 \mathrm{rad} / \mathrm{s}\) to \(100 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data.
```

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 1]});
data = frd(G,logspace(-2,2,100));

```
data is an \(f r d\) object containing the continuous-time frequency response for \(G\).
Create estimation options set.
```

opt = tfestOptions('Focus','prediction');

```

Estimate a transfer function for data, using the options set opt.
```

np = [3 4];
nz = [1 0];
sys = tfest(data,np,nz,opt);

```
np specifies the number of poles in the estimated transfer function. The first element of np indicates that the transfer function from the first input to the output contains 3 poles.

Similarly, the second element of \(n p\) indicates that the transfer function from the second input to the output contains 4 poles.
\(n z\) specifies the number of zeros in the estimated transfer function. The first element of \(n z\) indicates that the transfer function from the first input to the output contains 1 zero. Similarly, the second element of \(n p\) indicates that the transfer function from the second input to the output does not contain any zeros.
opt specifies the estimation options for estimating the transfer function.
sys is an idtf model containing the estimated transfer function.
- "How to Estimate Transfer Function Models at the Command Line"

\section*{More About}

\section*{Algorithms}
tfest uses the prediction error minimization (PEM) approach to estimate transfer function coefficients. In general, the estimating algorithm performs two major tasks:

1 Initializing the estimable parameters.
2 Updating the estimable parameters.
The details of the algorithms used to perform these tasks vary depending on a variety of factors, including the sampling of the estimated model and the estimation data.

\section*{Continuous-Time Transfer Function Estimation Using Time-Domain Data}

\section*{Parameter Initialization}

The estimation algorithm initializes the estimable parameters using the method specified by the InitMethod estimation option. The default method is the Instrument Variable (IV) method.

The State-Variable Filters (SVF) approach and the Generalized Poisson Moment Functions (GPMF) approach to continuous-time parameter estimation use prefiltered
data [1] [2]. The constant \(\frac{1}{\lambda}\) in [1] and [2] corresponds to the initialization option (InitOption) field FilterTimeConstant. IV is the simplified refined IV method
and is called SRIVC in [3]. This method has a prefilter that is the denominator of the current model, initialized with SVF. This prefilter is iterated up to MaxIter times, until the model change is less than Tolerance. MaxIter and Tolerance are options that you can specify using the InitOption structure. The 'n4sid' initialization option estimates a discrete-time model, using the N4SID estimation algorithm, that it transforms to continuous-time using d2c.

You use tfestOptions to create the option set used to estimate a transfer function.

\section*{Parameter Update}

The initialized parameters are updated using a nonlinear least-squares search method, specified by the SearchMethod estimation option. The objective of the search method is to minimize the weighted prediction error norm.

\section*{Discrete-Time Transfer Function Estimation}

For discrete-time data, tfest uses the same algorithm as oe to determine the numerator and denominator polynomial coefficients. In this algorithm, the initialization is performed using arx, followed by nonlinear least-squares search based updates to minimize a weighted prediction error norm.

\section*{Continuous-Time Transfer Function Estimation Using Frequency-Domain Data}

For continuous-time data and fixed delays, the Output-Error algorithm is used. For continuous-time data and free delays, or for discrete-time data, the state-space estimation algorithm is used. In this algorithm, the model coefficients are initialized using the N4SID estimation method. This initialization is followed by nonlinear leastsquares search based updates to minimize a weighted prediction error norm.

\section*{Delay Estimation}
- When delay values are specified as NaN, they are estimated separate from the model's numerator and denominator coefficients, using delayest. The delay values thus determined are treated as fixed values during the iterative update of the model using a nonlinear least-squares search method. Thus, the delay values are not iteratively updated. The only exception is the estimation of continuous-time models using continuous-time data.
- For an initial model, init_sys, with:
- init_sys.Structure.ioDelay. Value specified as finite values
- init_sys.Structure.ioDelay.Free specified as true
the transport delay values are updated during estimation only if you are using continuous-time, frequency-domain data and init_sys. Ts is zero. In all other cases, the initial delay values are left unchanged.

Estimation of delays is often a difficult problem. You should assess the presence and the value of a delay. To do so, use physical insight of the process being modeled and functions such as arxstruc, delayest, and impulseest. For an example of determining input delay, see Model Structure Selection: Determining Model Order and Input Delay.
- "What are Transfer Function Models?"
- "Regularized Estimates of Model Parameters"

\section*{References}
[1] Garnier, H., M. Mensler, and A. Richard. "Continuous-time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation." International Journal of Control, 2003, Vol. 76, Issue 13, pp 1337-1357.
[2] Ljung, L. "Experiments With Identification of Continuous-Time Models." Proceedings of the 15th IFAC Symposium on System Identification. 2009.
[3] Young, P. C. and A.J. Jakeman. "Refined instrumental variable methods of timeseries analysis: Part III, extensions." International Journal of Control 31, 1980, pp 741-764.

\section*{See Also}
ar | arx \| bj | greyest \| idtf \| oe \| polyest \| procest \| ssest \| tfestOptions

\section*{ffestOptions}

Options set for tfest

\section*{Syntax}
opt = tfestOptions
opt = tfestOptions(Name, Value)

\section*{Description}
opt \(=\) tfestOptions creates the default options set for tfest.
opt = tfestOptions(Name, Value) creates an option set with the options specified by one or more Name,Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'InitMethod'}

Algorithm used to initialize the values of the numerator and denominator of the output of tfest.

Applies only for estimation of continuous-time transfer functions using time domain data.
InitMethod is a string that requires the following values:
- 'iv' - Instrument Variable approach.
- 'svf' - State Variable Filters approach.
- 'gpmf ' - Generalized Poisson Moment Functions approach.
- 'n4sid' - Subspace state-space estimation approach.
- 'all' - Combination of all of the preceding approaches. The software tries all these methods and selects the method that yields the smallest value of prediction error norm.

Default: 'iv'

\section*{'InitOption'}

Options associated with the method used to initialize the values of the numerator and denominator of the output of tfest.

InitOption is a structure with the following fields:
- N4Weight - Calculates the weighting matrices used in the singular-value decomposition step of the 'n4sid' algorithm. Applicable when InitMethod is 'n4sid'.

N4Weight is a string that requires the following values:
- 'MOESP' - Uses the MOESP algorithm by Verhaegen.
- 'CVA' - Uses the canonical variable algorithm (CVA) by Larimore.
- 'SSARX ' - A subspace identification method that uses an ARX estimation based algorithm to compute the weighting.

Specifying this option allows unbiased estimates when using data that is collected in closed-loop operation. For more information about the algorithm, see [6].
- 'auto' - The software automatically determines if the MOESP algorithm or the CVA algorithm should be used in the singular-value decomposition step.

Default: 'auto'
- N4Horizon - Determines the forward and backward prediction horizons used by the 'n4sid' algorithm. Applicable when InitMethod is 'n4sid'.

N4Horizon is a row vector with three elements: [\(r\) sy su], where \(r\) is the maximum forward prediction horizon. The algorithm uses up to \(r\) step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [1] for more information. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3
matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. k is the number of guesses of [\(r\) sy su] combinations.

If N4Horizon = 'auto', the software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: 'auto'
- FilterTimeConstant - Time constant of the differentiating filter used by the iv, svf, and gpmf initialization methods (see [4] and [5]).

FilterTimeConstant specifies the cutoff frequency of the differentiating filter, \(F_{\text {cutoff, }}\) as:
\[
F_{\text {cutoff }}=\frac{\text { FilterTimeConstant }}{T_{s}}
\]
\(T_{s}\) is the sampling time of the estimation data.
Specify FilterTimeConstant as a positive number, typically less than 1. A good value of FilterTimeConstant is the ratio of \(T_{s}\) to the dominating time constant of the system.

Default: 0.1
- MaxIter - Maximum number of iterations. Applicable when InitMethod is 'iv'.

Default: 30
- Tolerance - Convergence tolerance. Applicable when InitMethod is 'iv '.

Default: 0.01

\section*{'InitialCondition'}

Specifies how initial conditions are handled during estimation.
- 'zero' - All initial conditions are taken as zero.
- 'estimate ' - The necessary initial conditions are treated as estimation parameters.
- 'backcast' - The necessary initial conditions are estimated by a backcasting (backward filtering) process, described in [2].
- 'auto ' - An automatic choice among the preceding options is made, guided by the data.

Default: 'auto'
'Focus'
Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus requires one of the following values:
- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- 'prediction' - Same as 'simulation ', except that this option does not enforce the stability of the resulting model.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

```
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'simulation'

\section*{'EstCovar' - Control whether to generate parameter covariance data true (default) | false}

Controls whether parameter covariance data is generated, specified as true or false.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

\section*{'Display ' - Specify whether to display the estimation progress 'off' (default) | 'on'}

Specify whether to display the estimation progress, specified as one of the following strings:

Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress-viewer window
- 'off' - No progress or results information is displayed

\section*{'InputOffset ' - Remove offset from time-domain input data during estimation}
[] (default) | vector of positive integers
Removes offset from time-domain input data during estimation, specified as a vector of positive integers.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{' OutputOffset' - Remove offset from time-domain output data during estimation [] (default) | vector}

Removes offset from time domain output data during estimation, specified as a vector of positive integers or [].

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{'Regularization'}

Options for regularized estimation of model parameters. For more information on regularization, see "Regularized Estimates of Model Parameters".

Structure with the following fields:
- Lambda - Constant that determines the bias versus variance tradeoff.

Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0
- R-Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box models, you can also specify a vector of \(n p\) positive numbers such that each entry denotes the confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free parameters.

Default: 1
- Nominal - The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are refining a model, you can set the value to 'model' to pull the parameters towards the parameter values of the initial model. The initial parameter values must be finite for this setting to work.

\section*{Default: 0}

\section*{'SearchMethod'}

Search method used for iterative parameter estimation.
SearchMethod requires one of the following values:
- 'gn' - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J))*norm(J) are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- 'gna ' - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [3]. Eigenvalues less than gamma*max (sv) of the Hessian are ignored, where \(s v\) are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). gamma is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. gamma is decreased by the factor \(2 *\) LMStep each time a search is successful without any bisections.
- 'lm' - Uses the Levenberg-Marquardt method, so that the next parameter value is - pinv \((\mathrm{H}+\mathrm{d} * \mathrm{I}) * \operatorname{grad}\) from the previous one, where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- 'lsqnonlin' - Uses lsqnonlin optimizer from Optimization Toolbox software. This search method can only handle the Trace criterion.
- 'grad' - The steepest descent gradient search method.
- 'auto' - A choice among the preceding options is made in the algorithm. The descent direction is calculated using 'gn', 'gna', 'lm', and 'grad' successively, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{'SearchOption'}

Options set for the search algorithm.

\section*{SearchOption structure when SearchMethod is specified as 'gn', 'gna', 'lm', 'grad', or 'auto'}

\section*{Field Description}

Name
Toleran Minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations stop. The estimate of the expected loss-function improvement at the next iteration is based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
MaxIter Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the start-up procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
Advance Advanced search settings.
Specified as a structure with the following fields:

\section*{Field Name Description}

GnPinvCon:Singular values of the Jacobian matrix that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction. Applicable when SearchMethod is 'gn'.

GnPinvConst must be a positive, real value.
\begin{tabular}{|c|c|c|}
\hline Field Name & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{9}{*}{} & Field Name & Description \\
\hline & & Default: 10000 \\
\hline & InitGnaTo & \begin{tabular}{l}
Initial value of gamma. Applicable when SearchMethod is 'gna'. \\
Default: 0.0001
\end{tabular} \\
\hline & LMStartVa & \begin{tabular}{l}
Starting value of search-direction length \(d\) in the LevenbergMarquardt method. Applicable when SearchMethod is 'lm'. \\
Default: 0.001
\end{tabular} \\
\hline & LMStep & \begin{tabular}{l}
Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is ' 1 m '. \\
Default: 2
\end{tabular} \\
\hline & MaxBisect. & \begin{tabular}{l}
Maximum number of bisections used by the line search along the search direction. \\
Default: 25
\end{tabular} \\
\hline & MaxFunEva. & \begin{tabular}{l}
Iterations stop if the number of calls to the model file exceeds this value. \\
MaxFunEvals must be a positive, integer value. \\
Default: Inf
\end{tabular} \\
\hline & MinParChal & \begin{tabular}{l}
Smallest parameter update allowed per iteration. MinParChange must be a positive, real value. \\
Default: 0
\end{tabular} \\
\hline & RelImprov & \begin{tabular}{l}
Iterations stop if the relative improvement of the criterion function is less than RelImprovement. \\
RelImprovement must be a positive, integer value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & \multicolumn{2}{l}{ Description } \\
\hline \multirow{4}{*}{} & Field Name & Description \\
\cline { 2 - 4 } & \multicolumn{3}{|l|}{} & DtepReduc & \begin{tabular}{l}
Suggested parameter update is reduced by the factor \\
StepReduction after each try. This reduction continues until \\
either MaxBisections tries are completed or a lower value of \\
the criterion function is obtained.
\end{tabular} \\
\hline & \begin{tabular}{l}
StepReduction must be a positive, real value that is greater \\
than 1. \\
Default: 2
\end{tabular} \\
\hline
\end{tabular}

\section*{SearchOption structure when SearchMethod is specified as 'Isqnonlin'}
\begin{tabular}{|ll|}
\hline \begin{tabular}{l}
Field \\
Name
\end{tabular} & Description \\
\hline TolFun & \begin{tabular}{l}
Termination tolerance on the loss function that the software minimizes to \\
determine the estimated parameter values. \\
The value of TolFun is the same as that of \\
sys.SearchOption. Advanced. TolFun. \\
Default: 1e-5
\end{tabular} \\
\hline TolX & \begin{tabular}{l}
Termination tolerance on the estimated parameter values. \\
The value of TolX is the same as that of \\
sys.SearchOption. Advanced. TolX.
\end{tabular} \\
& \begin{tabular}{l}
Default: 1e-6
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations during loss-function minimization. The \\
iterations stop when MaxIter is reached or another stopping criterion is \\
satisfied, such as TolFun etc.
\end{tabular} \\
\hline
\end{tabular}
```

Field Description
Name
The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.
Default: }2
Advance Options set for lsqnonlin.
For more information, see the Optimization Options table in "Optimization
Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin, and
then modify it to specify its various options.

```

\section*{'Advanced'}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. For more information on robust norm choices, see section 15.2 of [1].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when inputoutput data is split into segments.

MaxSize must be a positive, integer value.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- \(s\) - Specifies the location of the right-most pole to test the stability of continuoustime models. A model is considered stable when its right-most pole is to the left of s .

Default: 0
- \(\quad\) z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

The initial condition is estimated when
\[
\frac{\left\|y_{p, z}-y_{\text {meas }}\right\|}{\left\|y_{p, e}-y_{\text {meas }}\right\|}>\text { AutoInitThreshold }
\]
- \(y_{\text {meas }}\) is the measured output.
- \(y_{p, z}\) is the predicted output of a model estimated using zero initial states.
- \(y_{p, e}\) is the predicted output of a model estimated using estimated initial states.

Applicable when InitialCondition is 'auto '.
Default: 1.05

\section*{'OutputWeight'}

Specifies criterion used during minimization.
OutputWeight can have the following values:
- 'noise ' - Minimize \(\operatorname{det}\left(E^{*} E\right)\), where \(E\) represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. This option uses the inverse of the estimated noise variance as the weighting function.
- Positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E * W\)). \(E\) is the matrix of prediction errors, with one
column for each output, and \(W\) is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input, multiple-output models or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.
- [] - The software chooses between the 'noise ' or using the identity matrix for W.

\section*{Output Arguments}
opt
Option set containing the specified options for tfest.

\section*{Examples}

\section*{Create Default Options Set for Transfer Function Estimation}
```

opt = tfestOptions;

```

\section*{Specify Options for Transfer Function Estimation}

Create an options set for tfest using the 'n4sid' initialization algorithm and set the Display to 'on'.
```

opt = tfestOptions('InitMethod','n4sid','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = tfestOptions;
opt.InitMethod = 'n4sid';
opt.Display = 'on';

```

\section*{References}
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[2] Knudsen, T. "New method for estimating ARMAX models," In Proceedings of 10th IFAC Symposium on System Identification, SYSID'94, Copenhagen, Denmark, July 1994, Vol. 2, pp. 611-617.
[3] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates." Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[4] Garnier, H., M. Mensler, and A. Richard. "Continuous-time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation" International Journal of Control, 2003, Vol. 76, Issue 13, pp 1337-1357.
[5] Ljung, L. "Experiments With Identification of Continuous-Time Models." Proceedings of the 15th IFAC Symposium on System Identification. 2009.
[6] Jansson, M. "Subspace identification and ARX modeling." 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, 2003.

\section*{See Also}
tfest

\section*{timeoptions}

Create list of time plot options

\section*{Syntax}
```

P = timeoptions
P = timeoptions('cstprefs')

```

\section*{Description}
\(P=\) timeoptions returns a list of available options for time plots with default values set. You can use these options to customize the time value plot appearance from the command line.

P = timeoptions('cstprefs') initializes the plot options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

This table summarizes the available time plot options.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline Title, XLabel, YLabel & Label text and style \\
\hline TickLabel & Tick label style \\
\hline Grid & \begin{tabular}{l}
Show or hide the grid \\
Specified as one of the following strings: \\
'off ' I 'on ' \\
Default: ' off '
\end{tabular} \\
\hline XlimMode, YlimMode & Limit modes \\
\hline Xlim, Ylim & \begin{tabular}{l}
Axes limits \\
\hline IOGrouping
\end{tabular} \begin{tabular}{l}
Grouping of input-output pairs \\
Specified as one of the following strings: \\
'none' I 'inputs ' I ' output ' I 'all ' \\
Default: ' none '
\end{tabular} \\
\hline InputLabels, OutputLabels & Input and output label styles \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline InputVisible, OutputVisible & Visibility of input and output channels \\
\hline Normalize & \begin{tabular}{l}
Normalize responses \\
Specified as one of the following strings: \\
'on' | 'off' \\
Default: 'off'
\end{tabular} \\
\hline SettleTimeThreshold & Settling time threshold \\
\hline RiseTimeLimits & Rise time limits \\
\hline TimeUnits & \begin{tabular}{l}
Time units, specified as one of the following strings: \\
- 'nanoseconds' \\
- 'microseconds' \\
- 'milliseconds' \\
- 'seconds' \\
- 'minutes' \\
- 'hours' \\
- 'days' \\
- 'weeks' \\
- 'months' \\
- 'years' \\
Default: 'seconds ' \\
You can also specify ' auto' which uses time units specified in the TimeUnit property of the input system. For multiple systems with different time units, the units of the first system is used.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

In this example, enable the normalized response option before creating a plot.
```

P = timeoptions;

```
\% Set normalize response to on in options
P.Normalize = 'on';
\% Create plot with the options specified by \(P\)
\(\mathrm{h}=\) stepplot(tf(10,[1,1]),tf(5,[1,5]),P);
The following step plot is created with the responses normalized.

\section*{See Also \\ getoptions | impulseplot | initialplot | lsimplot | setoptions | stepplot}

\section*{totaldelay}

Total combined I/O delays for LTI model

\section*{Syntax}
```

td = totaldelay(sys)

```

\section*{Description}
td = totaldelay(sys) returns the total combined I/O delays for an LTI model sys. The matrix td combines contributions from the InputDelay, OutputDelay, and ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as integer multiples of the sample period for discrete-time models. To obtain the delay times in seconds, multiply td by the sample time sys.Ts.

\section*{Examples}
```

sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2; % 2 sec input delay
sys.outputd = 1.5; % 1.5 sec output delay
td = totaldelay(sys)
td =
3.5000

```

The resulting I/O map is
\[
e^{-2 s} \times \frac{1}{s} e^{-1.5 s}=e^{-3.5 s} \frac{1}{s}
\]

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model sys.
```

See Also
absorbDelay | hasdelay

```

\section*{translatecov}

Translate parameter covariance across model operations

\section*{Syntax}
```

sys_new = translatecov(fcn,sys)
sys_new = translatecov(fcn,sys1,sys2,...sysn)

```

\section*{Description}
sys_new = translatecov(fcn, sys) translates parameter covariance in the model sys during the transformation operation specified in fcn. Parameter covariance is computed by applying Gauss Approximation formula on the parameter covariance of sys.
sys_new = translatecov(fcn,sys1,sys2,...sysn) translates parameter covariance in the multiple models sys1,sys2,...sysn. The parameters of the systems are assumed to be uncorrelated.

\section*{Input Arguments}

\section*{fen}

Function for a model transformation operation, specified as a function handle. The function handle describes the transformation such that:
- For single-model operations, sys_new = fcn(sys). Examples of single-model operations are model-type conversion (idpoly, idss, ...) and sample time conversion (c2d, ...). For example, fcn \(=@(x) c 2 d(x, T s)\), or fcn \(=\) @idpoly.
- For multi-model operations, sys_new = fcn(sys1,sys2,..). Examples of multimodel operations are merging and concatenation. For example, \(f c n=@(x, y)\) [\(x, y\)] such that fon(sys1, sys2) performs horizontal concatenation of the models sys1 and sys2.

\section*{sys}

Linear model, specified as one of the following model types:
- idtf
- idproc
- idss
- idpoly
- idgrey

The model must contain parameter covariance information (getcov(sys) is nonempty).
```

sys1,sys2,...sysn

```

Multiple linear models. Models must be of the same type.

\section*{Output Arguments}

\section*{sys_new}

Model resulting from a transformation operation and includes parameter covariance.

\section*{Examples}

\section*{Translate Parameter Covariance During Model Conversion}

Convert an estimated transfer function model into state-space model while also translating the estimated parameter covariance.

Estimate a transfer function model.
```

load iddata1
sys1 = tfest(z1,2);

```

Convert the estimated model to state-space form while also translating the estimated parameter covariance.
```

sys2 = translatecov(@(x)idss(x),sys1);

```

If you convert the transfer function model to state-space form directly, the estimated parameter covariance is lost (the output of getcov is empty).
```

sys3 = idss(sys1);
getcov(sys3)

```

\section*{ans \(=\)}

\section*{[]}

View the parameter covariance in the estimated and converted models.
```

covsys1 = getcov(sys1);

```
covsys2 = getcov(sys2);

Compare the confidence regions.
h = bodeplot(sys1,sys2); showConfidence(h,2);

\section*{Bode Diagram}

The confidence bounds for sys1 overlaps with sys2.

\section*{Translate Parameter Covariance During Model Concatenation}

Concatenate 3 single-output models such that the covariance data from the 3 models combine to produce the covariance data for the resulting model.

Construct a state-space model.
```

a = [-1.1008 0.3733;0.3733 -0.9561];
b = [0.7254 0.7147;-0.0631 -0.2050];
c = [-0.1241 0; 1.4897 0.6715; 1.4090 -1.2075];
d = [0 1.0347; 1.6302 0; 0.4889 0];
sys = idss(a,b,c,d,'Ts',0);

```

Generate multi-output estimation data.
```

t = (0:0.01:0.99)';
u = randn(100,2);
y = lsim(sys,u,t,'zoh');
y = y + rand(size(y))/10;
data = iddata(y,u,0.01);

```

Estimate a separate model for each output signal.
```

m1 = ssest(data(:,1,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');
m2 = ssest(data(:,2,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');
m3 = ssest(data(:,3,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'none');

```

Combine the estimated models while also translating the covariance information.
```

f = @(x,y,z)[x;y;z];
M2 = translatecov(f, m1, m2, m3);

```

The parameter covariance is not empty.
```

getcov(M2, 'factors')
ans =
R: [36\times36 double]
T: [24\times36 double]
Free: [90x1 logical]

```

If you combine the estimated models into one 3-output model directly, the covariance information is lost (the output of getcov is empty).
\(\mathrm{M} 1=[\mathrm{m} 1 ; \mathrm{m} 2 ; \mathrm{m} 3]\); getcov(M1)
ans \(=\)
[]

Compare the confidence bounds.
h = bodeplot (M2, m1, m2, m3); showConfidence(h);

\section*{Bode Diagram}

The confidence bounds for M2 overlap with those of \(\mathrm{m} 1, \mathrm{~m} 2\) and m 3 models on their respective plot axes.

\section*{More About}

\section*{Tips}
- translatecov transforms the model in the same way that directly calling the transformation command does. For example, translatecov (@(x)d2c (x), sys) produces a system that has the same coefficients as d2c (sys). The resulting model also has the parameter covariance of sys. Using d2c (sys) directly does not translate the parameter covariance.
- If you obtained sys through estimation and have access to the estimation data, you can use zero-iteration update to recompute the parameter covariance. For example:
```

load iddata1
m = ssest(z1,4);
opt = ssestOptions
opt.SearchOption.MaxIter = 0;
m_new = ssest(z1,m2,opt)

```

You cannot run a zero-iteration update in the following cases:
- If MaxIter option, which depends on the SearchMethod option, is not available.
- For some model and data types. For example, a continuous-time idpoly model using time-domain data.

\section*{Algorithms}
translatecov uses numerical perturbations of individual parameters of sys to compute the Jacobian of fcn(sys) parameters with respect to parameters of sys. translatecov then applies Gauss Approximation formula cov_new \(=J \times \operatorname{cov} \times J^{T}\) to translate the covariance, where \(J\) is the Jacobian matrix. This operation can be slow for models containing a large number of free parameters.
- "What Is Model Covariance?"
- "Types of Model Uncertainty Information"
```

See Also
getcov | getpvec | rsample | setcov

```

\section*{treepartition}

Class representing binary-tree nonlinearity estimator for nonlinear ARX models

\section*{Syntax}
t=treepartition(Property1,Value1, ...PropertyN, ValueN)
t=treepartition('NumberOfUnits', N)

\section*{Description}
treepartition is an object that stores the binary-tree nonlinear estimator for estimating nonlinear ARX models. The object defines a nonlinear function \(y=F(x)\), where \(F\) is a piecewise-linear (affine) function of \(x, y\) is scalar, and \(x\) is a 1-by-m vector. Compute the value of \(F\) using evaluate (\(\mathrm{t}, \mathrm{x}\)), where \(t\) is the treepartition object at \(x\).

\section*{Construction}
t=treepartition(Property1, Value1, ...PropertyN, ValueN) creates a binary tree nonlinearity estimator object specified by properties in "treepartition Properties" on page \(1-1117\). The tree has the number of leaves equal to \(2^{\wedge}(J+1)-1\), where \(J\) is the number of nodes in the tree and set by the property NumberOfUnits. The default value of NumberOfUnits is computed automatically and sets an upper limit on the actual number of tree nodes used by the estimator.
t=treepartition('NumberOfUnits',\(N\)) creates a binary tree nonlinearity estimator object with \(N\) terms in the binary tree expansion (the number of nodes in the tree). When you estimate a model containing t , the value of the NumberOfUnits property, N , in t is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} n-1\) and less than or equal to \(N\).

\section*{treepartition Properties}

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
set(t, 'NumberOfUnits', 5)
The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nodes in the tree. \\
Default=' auto' selects the number of nodes from the data using the pruning algorithm. \\
When you estimate a model containing a treepartition nonlinearity, the value of NumberOfUnits is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} \mathrm{n}-1\) and less than or equal to N (the integer value of units you specify). \\
For example: \\
treepartition('NumberOfUnits ', 5)
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Structure containing the following fields: \\
- RegressorMean: 1-by-m vector containing the means of \(x\) in estimation data, r. \\
- RegressorMinMax: m-by-2 matrix containing the maximum and minimum estimation-data regressor values. \\
- OutputOffset: scalar d. \\
- LinearCoef: m-by-1 vector \(L\). \\
- SampleLength: Length of estimation data. \\
- NoiseVariance: Estimated variance of the noise in estimation data. \\
- Tree: A structure containing the following tree parameters:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
TreeLevelPntr: N -by-1 vector containing the levels j of each node. \\
- AncestorDescendantPntr: N-by-3 matrix, such that the entry \((k, 1)\) is the ancestor of node \(k\), and entries \((k, 2)\) and \((k, 3)\) are the left and right descendants, respectively. \\
- LocalizingVectors: N -by-(\(\mathrm{m}+1\)) matrix, such that the rth row is B_r. \\
- LocalParVector: N -by-(\(\mathrm{m}+1\)) matrix, such that the kth row is C_k. \\
- LocalCovMatrix: N -by-((\(\mathrm{m}+1\)) m/2) matrix such that the kth row is the covariance matrix of C_k. C_k is reshaped as a row vector.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest partition. \\
Default: 'auto', which computes the value from the data. \\
- Threshold: Threshold parameter used by the adaptive pruning algorithm. Smaller threshold value corresponds to a shorter branch that is terminated by the active partition D_a. Higher threshold value results in a longer branch. \\
Default: 1.0 . \\
- Stabilizer: Penalty parameter of the penalized least-squares algorithm used to compute local parameter vectors C_k. Higher stabilizer value improves stability, but may deteriorate the accuracy of the least-square estimate. \\
Default: 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Use treepartition to specify the nonlinear estimator in nonlinear ARX models. For example:
```

m=nlarx(Data,Orders,treepartition('num',5));

```

The following commands provide an example of using advanced treepartition options:
```

% Define the treepartition object.
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure.
t.Options.Threshold=2;
% Estimate the nonlinear ARX model.
m=nlarx(Data,Orders,t);

```

\section*{More About}

\section*{Algorithms}

The mapping \(F\) is defined by a dyadic partition \(P\) of the \(x\)-space, such that on each partition element \(P_{k}, F\) is a linear mapping. When \(x\) belongs to \(P_{k}, F(x)\) is given by:
\[
F(x)=d+x L+(1, x) C_{k},
\]
where \(L\) is 1-by- \(m\) vector and \(d\) is a scalar common for all elements of partition. \(C_{\mathrm{k}}\) is a 1-by- \((m+1)\) vector.

The mapping \(F\) and associated partition \(P\) of the \(x\)-space are computed as follows:
1 Given the value of \(J\), a dyadic tree with \(J\) levels and \(N=2^{J-1}\) nodes is initialized.
2 Each node at level \(1<j<J\) has two descendants at level \(j+1\) and one parent at level \(j-1\).
- The root node at level 1 has two descendants.
- Nodes at level \(J\) are terminating leaves of the tree and have one parent.

3 One partition element is associated to each node \(k\) of the tree.
- The vector of coefficients \(C_{k}\) is computed using the observations on the corresponding partition element \(P_{k}\) by the penalized least-squares algorithm.
- When the node \(k\) is not a terminating leaf, the partition element \(P_{\mathrm{k}}\) is cut into two to obtain the partition elements of descendant nodes. The cut is defined by the half-spaces \((1, x) B_{k}>0\) or \(<=0\) (move to left or right descendant), where \(B_{k}\) is chosen to improve the stability of least-square computation on the partitions at the descendant nodes.

4 When the value of the mapping \(F\), defined by the treepartition object, is computed at \(x\), an adaptive algorithm selects the active node \(k\) of the tree on the branch of partitions which contain \(x\).

When the idnlarx property Focus is 'Prediction', treepartition uses a noniterative technique for estimating parameters. Iterative refinements are not possible for models containing this nonlinearity estimator.

You cannot use treepartition when Focus is 'Simulation' because this nonlinearity estimators is not differentiable. Minimization of simulation error requires differentiable nonlinear functions.

\section*{See Also}
nlarx

\section*{TrendInfo}

Offset and linear trend slope values for detrending data

\section*{Description}

TrendInfo class represents offset and linear trend information of input and output data. Constructing the corresponding object lets you:
- Compute and store mean values or best-fit linear trends of input and output data signals.
- Define specific offsets and trends to be removed from input-output data.

By storing offset and trend information, you can apply it to multiple data sets.
After estimating a linear model from detrended data, you can simulate the model at original operation conditions by adding the saved trend to the simulated output using retrend.

\section*{Construction}

For transient data, if you want to define a specific offset or trend to be removed from this data, create the TrendInfo object using getTrend. For example:
```

T=getTrend(data)

```
where data is the iddata object from which you will be removing the offset or linear trend, and \(T\) is the TrendInfo object. You must then assign specific offset and slope values as properties of this object before passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the trend information, use the detrend command with the output argument for storing trend information.

\section*{Properties}

After creating the object, you can use get or dot notation to access the object property values.
\begin{tabular}{|l|l|l|}
\hline Property Name & Default & Description \\
\hline DataName & Empty string & \begin{tabular}{l}
Name of the iddata object from which trend \\
information is derived (if any)
\end{tabular} \\
\hline InputOffset & \begin{tabular}{l}
zeros(1, nu), where \\
nu is the number of \\
inputs
\end{tabular} & \begin{tabular}{l}
- For transient data, the physical equilibrium offset \\
you specify for each input signal. \\
For steady-state data, the mean of input values. \\
Computed automatically when detrending the data. \\
If removing a linear trend from the input-output \\
data, the value of the line at to, where to is the start \\
time.
\end{tabular} \\
& \begin{tabular}{ll}
zeros(1, nu), where \\
nu is the number of \\
inputs
\end{tabular} & \begin{tabular}{l}
For multiple experiment data, this is a cell array of size \\
equal to the number of experiments in the data set. \\
automatically when using the detrend command to \\
remove the linear trend in the data.
\end{tabular} \\
\hline InputSlope
\end{tabular}

\section*{Examples}

Construct the object that stores trend information as part of data detrending:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Detrend the mean from the data
% Store the mean as TrendInfo object T
[data_d,T] = detrend(data,0)
% View mean value removed from the data
get(T)

```

Construct the object that stores input and output offsets to be removed from transient data:
```

% Load SISO data containing vectors u2 and y2

```
load dryer2
\% Create data object with sampling time of 0.08 sec
data=iddata(y2, u2, 0.08)
\% Plot data on a time plot - it has a nonzero mean
plot (data)
\% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
\% Assign offset values to the TrendInfo object
T. InputOffset=5;
T.OutputOffset=5;
\% Subtract specific offset from the data
data_d = detrend (data, \(T\))
\% View mean value removed from the data
get(T)

\section*{More About}
- "Handling Offsets and Trends in Data"

\author{
See Also \\ detrend | getTrend | retrend
}

\section*{unitgain}

Specify absence of nonlinearities for specific input or output channels in HammersteinWiener models

\section*{Syntax}
unit=unitgain

\section*{Description}
unit=unitgain instantiates an object that specifies an identity mapping \(F(x)=x\) to exclude specific input and output channels from being affected by a nonlinearity in Hammerstein-Wiener models.

Use the unitgain object as an argument in the nlhw estimator to set the corresponding channel nonlinearity to unit gain.

For example, for a two-input and one-output model, to exclude the second input from being affected by a nonlinearity, use the following syntax:
```

m = nlhw(data,orders,['saturation''unitgain'],'deadzone')

```

In this case, the first input saturates and the output has an associated deadzone nonlinearity.

\section*{unitgain Properties}
unitgain does not have properties.

\section*{Examples}

For example, for a one-input and one-output model, to exclude the output from being affected by a nonlinearity, use the following syntax:
```

m = nlhw(Data,Orders,'saturation','unitgain')

```

In this case, the input has a saturation nonlinearity.
If nonlinearities are absent in input or output channels, you can replace unitgain with an empty matrix. For example, to specify a Wiener model with a sigmoid nonlinearity at the output and a unit gain at the input, use the following command:
m = nlhw(Data,Orders,[],'sigmoid');

\section*{More About}

\section*{Tips}

Use the unitgain object to exclude specific input and output channels from being affected by a nonlinearity in Hammerstein-Wiener models. unitgain is a linear function \(y=F(x)\), where \(F(x)=x\).
```

See Also
deadzone | nlhw | saturation | sigmoidnet

```

\section*{wavenet}

Class representing wavelet network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

\section*{Syntax}
```

s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

```

\section*{Description}
wavenet is an object that stores the wavelet network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity estimator object with N terms in the wavelet expansion.
s=wavenet (Property1, Value1, ...PropertyN, ValueN) creates a wavelet nonlinearity estimator object specified by properties in "wavenet Properties" on page 1-1127.

Use evaluate \((s, x)\) to compute the value of the function defined by the wavenet object s at x .

\section*{wavenet Properties}

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(w)
% Get value of NumberOfUnits property

```

\section*{w. NumberOfUnits}

You can also use the set function to set the value of particular properties. For example:
h set(w, 'LinearTerm', 'on')
The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nonlinearity units in the expansion. Default='auto'. \\
For example: \\
wavenet('NumberOfUnits',5)
\end{tabular} \\
\hline LinearTerm & \begin{tabular}{l}
Can have the following values: \\
- 'on' - (Default) Estimates the vector \(L\) in the expansion. \\
- 'off' - Fixes the vector \(L\) to zero and omits the term \((x-r) P L\). \\
For example: \\
wavenet(H, 'LinearTerm', 'on')
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Structure containing the parameters in the nonlinear expansion, as follows: \\
- RegressorMean: 1-by-m vector containing the means of \(x\) in estimation data, r. \\
- NonLinearSubspace: m-by-q matrix containing \(Q\). \\
- LinearSubspace: m-by-p matrix containing \(P\). \\
- LinearCoef: p-by-1 vector \(L\). \\
- ScalingDilation: ns-by-1 matrix containing the values \(b_{s_{-} n s}\). \\
- WaveletDilation: nw-by-1 matrix containing the values \(b_{w_{-} n w}\). \\
- ScalingTranslation: ns-by-q matrix containing the values \(c_{s_{-} n s}\). \\
- WaveletTranslation: nw-by-q matrix containing the values \(c_{w _n w}\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
- ScalingCoef: ns-by-1 vector containing the values \(a_{s_{-} n s}\). \\
- WaveletCoef: nw-by-1 vector containing the values \(a_{w_{-} n w}\). \\
- OutputOffset: scalar d.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest cell. A cell is the area covered by the significantly nonzero portion of a wavelet. Default: 'auto', which computes the value from the data. \\
- MinCells: Integer specifying the minimum number of cells in the partition. Default: 16. \\
- MaxCells: Integer specifying the maximum number of cells in the partition. Default: 128. \\
- MaxLevels: Integer specifying the maximum number of wavelet levels. Default: 10. \\
- DilationStep: Real scalar specifying the dilation step size. Default: 2. \\
- TranslationStep: Real scalar specifying the translation step size. Default: 1.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Use wavenet to specify the nonlinear estimator in nonlinear ARX and HammersteinWiener models. For example:
```

m=nlarx(Data,Orders,wavenet);

```

\section*{More About}

\section*{Tips}

Use wavenet to define a nonlinear function \(y=F(x)\), where \(y\) is scalar and \(x\) is an m dimensional row vector. The wavelet network function is based on the following function expansion:
\[
\begin{aligned}
F(x)=(x-r) P L & +a_{s_{-} 1} f\left(b_{s_{-} 1}\left((x-r) Q-c_{s_{-} 1}\right)\right)+\ldots \\
& +a_{s_{-} n s} f\left(b_{s_{-} n s}\left((x-r) Q-c_{s_{-} n s}\right)\right) \\
& +a_{w_{-} 1} g\left(b_{w_{-} 1}\left((x-r) Q-c_{w_{-} 1}\right)\right)+\ldots \\
& +a_{w_{-} n w} g\left(b_{w_{-} n w}\left((x-r) Q-c_{w_{-} n w}\right)\right)+d
\end{aligned}
\]
where:
- \(f\) is a scaling function.
- \(g\) is the wavelet function.
- \(\quad P\) and \(Q\) are m -by-p and m -by-q projection matrices, respectively.

The projection matrices \(P\) and \(Q\) are determined by principal component analysis of estimation data. Usually, \(\mathrm{p}=\mathrm{m}\). If the components of \(x\) in the estimation data are linearly dependent, then \(p<m\). The number of columns of \(Q, q\), corresponds to the number of components of \(x\) used in the scaling and wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a Hammerstein-Wiener model, \(\mathrm{m}=\mathrm{q}=1\) and \(Q\) is a scalar.
- \(r\) is a \(1-b y\)-m vector and represents the mean value of the regressor vector computed from estimation data.
- \(d, a_{s}, b_{s}, a_{w}\), and \(b_{w}\) are scalars. Parameters with the \(s\) subscript are scaling parameters, and parameters with the \(w\) subscript are wavelet parameters.
- \(L\) is a \(\mathrm{p}-b y-1\) vector.
- \(\quad c_{s}\) and \(c_{w}\) are 1-by-q vectors.

The scaling function \(f\) and the wavelet function \(g\) are both radial functions, as follows:
\[
\begin{aligned}
& f(x)=e^{-0.5 x x^{\prime}} \\
& g(x)=\left(N_{r}-x x^{\prime}\right) e^{-0.5 x x^{\prime}}
\end{aligned}
\]
where \(N_{r}\) is the length of \(x\) (number of regressors).

\section*{Algorithms}

When the idnlarx property Focus is 'Prediction', wavenet uses a fast, noniterative technique for estimating parameters. Successive refinements after the first estimation use an iterative algorithm.

When the idnlarx property Focus='Simulation', wavenet uses an iterative technique for estimating parameters.

To always use noniterative or iterative algorithm, specify the IterWavenet algorithm property of the idnlarx class.

\author{
See Also \\ nlarx | nlhw
}

\section*{xperm}

Reorder states in state-space models

\section*{Syntax}
sys \(=\) xperm(sys, \(P\))

\section*{Description}
sys \(=\) xperm(sys,P) reorders the states of the state-space model sys according to the permutation P . The vector P is a permutation of \(1: N X\), where \(N X\) is the number of states in sys. For information about creating state-space models, see ss and dss.

\section*{Examples}

Order the states in the ssF8 model in alphabetical order.
1 Load the ssF8 model by typing the following commands:
```

load ltiexamples
ssF8

```

These commands return:
```

a =

```

```

c =
PitchRate Velocity AOA PitchAngle

```
\begin{tabular}{lrlrr}
FlightPath & 0 & 0 & -1 & 1 \\
Acceleration & 0 & 0 & 0.733 & 0 \\
& & & & \\
\(d=\) & Elevator & Flaperon & \\
& 0 & 0 & \\
FlightPath & 0.0768 & 0.1134 & &
\end{tabular}

Continuous-time model.
2 Order the states in alphabetical order by typing the following commands:
```

[y,P]=sort(ssF8.StateName);
sys=xperm(ssF8,P)

```

These commands return:
```

a =

	AOA	PitchAngle	PitchRate	Velocity
AOA	-1.4	0	1	-0.0057
PitchAngle	0	0	1	0
PitchRate	-12.2	0	-0.7	-0.0458
Velocity	-0.2904	-0.562	0	-0.014

b =

	Elevator	Flaperon
AOA	-0.14	-0.72
PitchAngle	0	0
PitchRate	-19.1	-3.1
Velocity	-0.0119	-0.0096

C =

	AOA	PitchAngle	PitchRate	Velocity
FlightPath	-1	1	0	0
Acceleration	0.733	0	0	0

d =

	Elevator	Flaperon
FlightPath	0	0
Acceleration	0.0768	0.1134

```

Continuous-time model.
The states in SSF8 now appear in alphabetical order.

\section*{See Also}
ss | dss

\section*{zero}

Zeros and gain of SISO dynamic system

\section*{Syntax}
```

z = zero(sys)
[z,gain] = zero(sys)
[z,gain] = zero(sysarr,J1,...,JN)

```

\section*{Description}
z = zero(sys) returns the zeros of the single-input, single-output (SISO) dynamic system model, sys.
[z,gain] = zero(sys) also returns the overall gain of sys.
[z,gain] = zero(sysarr, J1, ..., JN) returns the zeros and gain of the model with subscripts \(\mathrm{J} 1, \ldots, \mathrm{JN}\) in the model array sysarr.

\section*{Input Arguments}

\section*{sys}

SISO "dynamic system model".
If sys has internal delays, zero sets all internal delays to zero, creating a zero-order Padé approximation. This approximation ensures that the system has a finite number of zeros. zero returns an error if setting internal delays to zero creates singular algebraic loops.

\section*{sysarr}

Array of dynamic system models.
J1, ..., JN
Indices identifying the model sysarr (J1, ..., JN) in the array sysarr.

\section*{Output Arguments}

\section*{z}

Column vector containing the locations of zeros in sys. The zero locations are expressed in the reciprocal of the time units of sys. For example, the zeros are in units of \(1 /\) minutes if the TimeUnit property of sys is minutes.

\section*{gain}

Gain of sys (in the zero-pole-gain sense).

\section*{Examples}

\section*{Zero Locations and Gain of Transfer Function}

Calculate the zero locations and overall gain of the transfer function
```

H(s)=\frac{4.2\mp@subsup{s}{}{2}+0.25s-0.004}{\mp@subsup{s}{}{2}+9.6s+17}.
H = tf([4.2,0.25,-0.004],[1,9.6,17]);
[z,gain] = zero(H)
z =
-0.0726
0.0131
gain =
4.2000

```

The zero locations are expressed in radians per second, because the time unit of the transfer function (H.TimeUnit) is seconds. Change the model time units, and zero returns pole locations relative to the new unit.
```

H = chgTimeUnit(H,'minutes');
[z,gain] = zero(H)
z =

```
```

    -4.3581
    0.7867
    gain =
4.2000

```

\section*{Alternatives}

To calculate the transmission zeros of a multi-input, multi-output system, use tzero.

\author{
See Also \\ pole | pzmap | tzero
}

\section*{zgrid}

Generate z-plane grid of constant damping factors and natural frequencies

\section*{Syntax}
zgrid
zgrid(z,wn)
zgrid([],[])

\section*{Description}
zgrid generates, for root locus and pole-zero maps, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to \(\Pi\) in steps of \(\Pi / 10\), and plots the grid over the current axis. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid draws the grid over the plot without altering the current axis limits.
zgrid (z,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and normalized natural frequencies in the vectors \(z\) and wn, respectively. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid(\(z, w n\)) draws the grid over the plot. The frequency lines for unnormalized (true) frequencies can be plotted using
```

zgrid(z,wn/Ts)

```
where Ts is the sample time.
zgrid([],[]) draws the unit circle.
Alternatively, you can select Grid from the right-click menu to generate the same zplane grid.

\section*{Examples}

Plot \(z\)-plane grid lines on the root locus for the system
\[
H(z)=\frac{2 z^{2}-3.4 z+1.5}{z^{2}-1.6 z+0.8}
\]
by typing
\(\mathrm{H}=\mathrm{tf}\left(\left[\begin{array}{l}2 \\ -3.4 \\ 1.5\end{array}\right],\left[\begin{array}{lll}1 & -1.6 & 0.8\end{array}\right],-1\right)\)
Transfer function:
\(2 z^{\wedge} 2-3.4 z+1.5\)
\(z^{\wedge} 2-1.6 z+0.8\)
Sampling time: unspecified
To see the z-plane grid on the root locus plot, type
```

rlocus(H)
zgrid
axis('square')

```


\section*{See Also \\ pzmap | rlocus | sgrid}

\section*{zpkdata}

Access zero-pole-gain data

\section*{Syntax}
[z,p,k] = zpkdata(sys)
[z,p,k,Ts] = zpkdata(sys)
[z,p,k,Ts,covz,covp,covk] = zpkdata(sys)

\section*{Description}
\([z, p, k]=\) zpkdata(sys) returns the zeros \(z\), poles \(p\), and gain(s) \(k\) of the zero-polegain model sys. The outputs \(z\) and \(p\) are cell arrays with the following characteristics:
- \(z\) and \(p\) have as many rows as outputs and as many columns as inputs.
- The (\(i, j\)) entries \(z\{i, j\}\) and \(p\{i, j\}\) are the (column) vectors of zeros and poles of the transfer function from input \(j\) to output \(i\).

The output k is a matrix with as many rows as outputs and as many columns as inputs such that \(k(i, j)\) is the gain of the transfer function from input \(j\) to output \(i\). If sys is a transfer function or state-space model, it is first converted to zero-pole-gain form using zpk.

For SISO zero-pole-gain models, the syntax
[z,p,k] = zpkdata(sys,'v')
forces zpkdata to return the zeros and poles directly as column vectors rather than as cell arrays (see example below).
[z,p,k,Ts] = zpkdata(sys) also returns the sample time Ts.
[z,p,k,Ts,covz,covp, covk] = zpkdata(sys) also returns the covariances of the zeros, poles and gain of the identified model sys. covz is a cell array such that covz\{ky,ku\} contains the covariance information about the zeros in the vector \(z\{k y, k u\}\). covz \(\{k y, k u\}\) is a 3-D array of dimension 2-by-2-by-Nz, where Nz is the
length of \(z\{k y, k u\}\), so that the \((1,1)\) element is the variance of the real part, the \((2,2)\) element is the variance of the imaginary part, and the \((1,2)\) and \((2,1)\) elements contain the covariance between the real and imaginary parts. covp has a similar relationship to \(p\) covk is a matrix containing the variances of the elements of \(k\).

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
sys.inputname

\section*{Examples}

\section*{Example 1}

Given a zero-pole-gain model with two outputs and one input
```

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...
Z
\#1: -------
(z-0.3)
2 (z+0.5)
\#2
(z^2 - 0.2z + 1.01)
Sampling time: unspecified
you can extract the zero/pole/gain data embedded in H with
[z,p,k] = zpkdata(H)
Z =
[ 0]
[-0.5000]
p =
[ 0.3000]
[2x1 double]
k =
1
2

```

To access the zeros and poles of the second output channel of H , get the content of the second cell in \(z\) and \(p\) by typing
```

z{2,1}
ans =
-0.5000
p{2,1}
ans =
0.1000+ 1.0000i
0.1000-1.0000i

```

\section*{Example 2}

Extract the ZPK matrices and their standard deviations for a 2-input, 1 output identified transfer function.

\section*{load iddata7}
transfer function model
sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);
an equivalent process model
```

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);
1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);
[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);

```

Use iopzplot to visualize the pole-zero locations and their covariances
```

h = iopzplot(sys1, sys2);
showConfidence(h)

```

\author{
See Also \\ get | ssdata | tfdata | zpk
}

\section*{IDDATA Sink}

Export iddata object to MATLAB workspace

\section*{Library}

System Identification Toolbox

The IDDATA Sink block exports an iddata object to the MATLAB workspace.

\section*{Input}

The first block input is the input of specified iddata object in the MATLAB workspace.
Similarly, the second block input is the output of the specified iddata object.

\section*{Output}

None.

\section*{Dialog Box}

\section*{Sink Block Parameters: Iddata Sink}

IDDATA Sink (mask) (link)
Export simulation data to workspace as IDDATA object. The object stores input and output signals sampled at the specified sample time when simulation stops. The object is created in the MATLAB base workspace when simulating from the model window or caller workspace when simulating programmatically.

Specify the variable name in "IDDATA Name". Specify a positive number, representing the sampling interval, in "Sample Time".

Parameters
IDDATA Name
data
Sample Time (sec.)
0.1

\section*{IDDATA Name}

Name of the iddata object in the MATLAB workspace.

\section*{Sample Time (sec.)}

Time interval (in seconds) between successive data samples.

\section*{See Also}

\author{
IDDATA Source
}

\section*{IDDATA Source}

Import iddata object from MATLAB workspace

\section*{Library}

System Identification Toolbox

The IDDATA Source block imports an iddata object from the MATLAB workspace.

\section*{Input}

None.

\section*{Output}

The first block output is the input signal of the iddata object imported from the MATLAB workspace.

The second block output is the output signal of this iddata object.

\section*{Dialog Box}

台 Source Block Parameters: Iddata Source
Iddata InputOutput (mask) (link)
This block allows to import IDDATA object from the MATLAB Workspace.

The first output port of the block corresponds to the input signal of the IDDATA object and the second output port corresponds to the output signal.

Enter an IDDATA object in the edit field.
Parameters
IDDATA object
iddata(1,1)

\section*{Iddata object}

Name of the iddata object imported from the MATLAB workspace.
The iddata object must contain only one experiment. For a multiple-experiment object, use getexp (data, kexp) to specify the experiment number kexp.

\section*{See Also}

\author{
IDDATA Sink
}

\title{
IDMODEL Model
}

Simulate identified linear model in Simulink software

\section*{Library}

System Identification Toolbox

The Idmodel block simulates a linear model in the MATLAB workspace.

Note: For simulating nonlinear models, use the IDNLGREY, IDNLARX, or IDNLHW Model blocks.

Input
Input signal to the model.

\section*{Output}

Simulated output from the model.

\section*{Dialog Box}
```

Function Block Parameters: Idmodel
x
Idmodel Block (mask) (link)
The Idmodel block accepts any of the linear identified models - state
space (idss), linear grey box (idgrey), polynomial (idpoly), transfer
function (idtf) or process (idproc) models. Internally, models will be
converted to their state space equivalent for evaluation.
Initial states are only meaningful for state-space models (idss,
idgrey).
For simulations with noise, Seed(s) may be left empty for random
restarts.
Enter as many seeds as there are outputs for specific realizations.
Parameters
Identified model
idss(-1,1,1,0,'Ts',1)
Initial states (state space only: idss, idgrey)
0
|dd noise
Noise seed(s). Default empty
[]
OK Cancel Help Apply

```

\section*{Identified model}

Name of an estimated linear model in the MATLAB workspace. The model must be an idss, idgrey, idpoly, idtf, or idproc object.

The block supports continuous-time or discrete-time models with or without inputoutput delays.

\section*{Initial states (state space only: idss, idgrey)}

Initial states for state-space (idss) and grey-box (idgrey) models. Initial states must be a vector of length equal to the order of the model.

For models other than idss and idgrey, initial conditions are zero.
In some situations, you may want to reproduce the results in the Model Output plot window in the System Identification app or those of the compare plot. To do so:

1 Convert the identified model into state-space form (idss model), and use the state-space model in the block.
2 Compute the initial state values that produce the best fit between the model output and the measured output signal using findstates(idParametric).
3 Specify the same input signal for simulation that you used as the validation data in the app or in the compare plot.

For example:
```

% Convert to state-space model
mss = idss(m);
% Estimate initial states from data
XO = findstates(mss,z);

```
\(z\) is the data set you used for validating the model m . Use the model mss and initial states XO in the Idmodel block to perform the simulation.

\section*{Add noise}

Select to add noise. When selected, Simulink \({ }^{\circledR}\) derives the noise amplitude from the model property model. NoiseVariance and the matrices or polynomials that determine the color of the additive noise.

For continuous-time models, the ideal variance of the noise term is infinite. In reality, you see a band-limited noise that takes into account the time constants of the system. You can interpret the resulting simulated output as filtered using a lowpass filter with a passband that does not distort the dynamics from the input.

\section*{Noise seed(s)}

Seed, specified as an integer, that forces the simulation to add the same noise to the output every time you simulate the model. Applies only when you select the Add noise check box. For more information about using seeds, see rand in the MATLAB documentation.

For multi-output models, you can use independent noise realizations that generate the outputs with additive noise. Enter a vector of \(N_{y}\) entries, where \(N_{y}\) is the number of output channels.

For random restarts that vary from one simulation to another, leave the field empty.
```

See Also
findstates(idParametric) | idpoly | idproc | idss | idtf | sim

```

\section*{IDNLARX Model}

Simulate nonlinear ARX model in Simulink software

\section*{Library}

System Identification Toolbox

The IDNLARX Model block simulates a nonlinear ARX (idnlarx) model for time-domain input and output data.

\section*{Input}

Input signal to the model.
For multi-input models, specify the input as an Nu-element vector, where Nu is the number of inputs. For example, you can use a Vector Concatenate block to concatenate scalar signals into a vector signal.

Note: Do not use a Bus Creator or Mux block to produce the vector signal.

\section*{Output}

Simulated output from the model.

\section*{Dialog Box}

Function Block Parameters: Nonlinear ARX Model

Nonlinear ARX Model (mask) (link)
Simulate a nonlinear ARX (idnlarx) model. Specify the name of an estimated idnlarx model for "Model". Specify initial conditions for simulation as one of the following:
1. Steady-state (equilibrium) input and output signal levels.
2. An initial state vector. Click on Help button for information on how to determine initial states from various requirements.

Parameters
Model
[]
Initial conditions: Input and output values
Input level:
0
Output level:
0

\section*{Model}

Name of idnlarx variable in the MATLAB workspace.

\section*{Initial conditions}

Specifies the initial states as one of the following:
- Input and output values: Specify the input and output levels, as follows:

\section*{- Input level}

If known, enter a vector of length equal to the number of model inputs. If you enter a scalar, it is the signal value for all inputs.

\section*{- Output level}

If known, enter a vector of length equal to the number of model's outputs. If you enter a scalar, it is the signal value for all outputs.
- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Vector of state values field.

If you do not know the initial states, you can estimate these states, as follows:
- To simulate around a given input level when you do not know the corresponding output level, you can estimate the equilibrium state values using the findop(idnlarx) command.

For example, to simulate a model \(M\) about a steady-state point where the input is 1 and the output is unknown, you can enter XO , such that:

XO = findop(M,'steady', 1,NaN)
- To estimate the initial states that provide a best fit between measured data and the simulated response of the model for the same input, use the findstates(idnlarx) command.

For example, to compute initial states such that the response of the model M matches the output data in the data set \(\mathbf{z}\), you can enter X0, such that:

XO = findstates(M,z,[],'sim')
- To continue a simulation from a previous run, use the simulated input-output values from the previous simulation to compute the initial states XO for the current simulation.

For example, suppose that firstSimData is a variable that stores the input and output values from a previous simulation. For a model M, you can enter XO, such that:

XO = data2state(M,firstSimData)

\section*{Examples}

\section*{Example 1}

In this example, you estimate a nonlinear ARX model from data and compare the model output to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.
```

z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

```

3 Estimate a nonlinear ARX model.
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits', 8));
4 Build the following Simulink model using the IDDATA Source, IDNLARX Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:

\section*{IDDATA Object: z1}

Click OK.
6 Double-click the IDNLARX Model block and enter the following into the block parameter dialog box:
- Model: mw1
- Initial conditions: Select Input and output values and accept the default values.

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale command to scale the axes.

\section*{Example 2}

In this example, you reduce the difference between the measured and simulated responses. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z1.
x0 = findstates(mw1,z1,[],'simulation');
2 Set the Initial Conditions to State Values. Enter x0 in the corresponding field.
3 Run the simulation.

\section*{See Also}

\section*{Related Commands}
findop(idnlarx)
findstates(idnlarx)
idnlarx

\title{
Topics in the System Identification Toolbox User's Guide
}

\author{
"Identifying Nonlinear ARX Models"
}

\section*{IDNLGREY Model}

Simulate nonlinear grey-box model in Simulink software

\section*{Library}

System Identification Toolbox

\section*{Description \\ Nonlinear Grey-Box Model}

Simulates systems of nonlinear grey-box (idnlgrey) models.

Input
Input signal to the model.

\section*{Output}

Output signal from the model.

\section*{Dialog Box}
```

台 Function Block Parameters: Nonlinear Grey-Box Model -
Nonlinear Grey-Box Model (mask) (link)
Enter name of an IDNLGREY object and, optionally, an initial state X0.
Parameters
Model
[]
Initial state ('z', 'm', or double vector)
'm'
OK Cancel Help Apply

```

\section*{IDNLGREY model}

Name of idnlgrey variable in the MATLAB workspace.

\section*{Initial state}

Specify the initial states as one of the following:
- 'z': Specifies zero, which corresponds to a system starting from rest.
- 'm': Specifies the internal initial states of the model.
- Vector of size equal to the number of states in the idnlgrey object.
- An initial state structure array. For information about creating this structure, type help idnlgrey/sim in the MATLAB Command Window.

\author{
See Also
}

\section*{Related Commands}
idnlgrey

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Estimating Nonlinear Grey-Box Models"
}

\title{
IDNLHW Model
}

Simulate Hammerstein-Wiener model in Simulink software

\section*{Library}

System Identification Toolbox

The IDNLHW Model block simulates a Hammerstein-Wiener (idnlhw) model for timedomain input and output data.

\section*{Input}

Input signal to the model.
For multi-input models, specify the input as an Nu-element vector, where Nu is the number of inputs. For example, you can use a Vector Concatenate block to concatenate scalar signals into a vector signal.

Note: Do not use a Bus Creator or Mux block to produce the vector signal.

\section*{Output}

Simulated output from the model.

\section*{Dialog Box}

Function Block Parameters: Hammerstein-Wiener Model

\section*{\(x\)}

Hammerstein-Wiener Model (mask) (link)
Simulate a Hammerstein-Wiener (idnlhw) model. Specify the name of an estimated idnlhw model for "Model". Specify initial conditions for simulation as one of the following:
1. String "zero" to use a value of zero for all initial state values.
2. Double vector representing the initial states of the linear block of the model. Click on Help button for information on how to determine initial states from various requirements.

\section*{Parameters}

Model
[]

\section*{Model}

Name of the idnlhw variable in the MATLAB workspace.

\section*{Initial conditions}

Specifies the initial states as one of the following:
- Zero: Specifies zero, which corresponds to a simulation starting from a state of rest.
- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Specify a vector of state values field.

If you do not know the initial states, you can estimate these states, as follows:
- To simulate around a given input level when you do not know the corresponding steady-state output level, you can estimate the equilibrium state values using the findop(idnlhw) command.

For example, to simulate a model \(M\) about a steady-state point where the input is 1 and the output is unknown, you can enter XO , such that:
```

X0 = findop(M,'steady',1,NaN)

```
- To estimate the initial states such that the simulated response of the model matches specified output data for the same input, use the findstates(idnlhw).

For example, for the data set \(z\) and model \(m\), you can enter \(X 0\), such that:
```

XO = findstates(m,z)

```

\section*{Examples}

\section*{Example 1}

In this example, you estimate a Hammerstein-Wiener model from data and compare the model output of the model to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.
```

z = iddata(y,u,0.2, ...
'Name','Two tank system',...
'Tstart',0);

```

3 Estimate a Hammerstein-Wiener model.
mhw1 = nlhw(z,[1 5 3],pwlinear,pwlinear);
4 Build the following Simulink model using the IDDATA Source, IDNLHW Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:
- IDDATA Object: z

Click OK.
6 Double-click the IDNLHW Model block and enter the following into the block parameter dialog box:
- Model: mhw1
- Initial Conditions: Zero

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale toolbar button to scale the axes.

\section*{Example 2}

In this example, you reduce the difference between the measured and simulated responses using suitable initial state values. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z:
```

x0 = findstates(mhw1,z,[],'maxiter',50);

```

2 Set the Initial Conditions to State Values. Enter x0 in the corresponding field.
3 Run the simulation.
See Also
Related Commands
findop(idnlhw)
findstates(idnlhw) idnlhw
Topics in the System Identification Toolbox User's Guide
"Identifying Hammerstein-Wiener Models"

\section*{Kalman Filter}

Estimate states of discrete-time or continuous-time linear system

\section*{Library}

\author{
Estimators
}

\section*{Description}

Use the Kalman Filter block to estimate states of a state-space plant model given process and measurement noise covariance data. The state-space model can be time-varying. A steady-state Kalman filter implementation is used if the state-space model and the noise covariance matrices are all time-invariant. A time-varying Kalman filter is used otherwise.

Kalman filter provides the optimal solution to the following continuous or discrete estimation problems:

\section*{Continuous-Time Estimation}

Given the continuous plant
\[
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t)+G(t) w(t) \quad \text { (state equation) } \\
y(t) & =C(t) x(t)+D(t) u(t)+H(t) w(t)+v(t) \quad \text { (measurement equation) }
\end{aligned}
\]
with known inputs \(u\), white process noise \(w\), and white measurement noise \(v\) satisfying:
\[
\begin{aligned}
& E[w(t)]=E[v(t)]=0 \\
& E\left[w(t) w^{T}(t)\right]=Q(t) \\
& E\left[w(t) v^{T}(t)\right]=N(t) \\
& E\left[v(t) v(t)^{T}\right]=R(t)
\end{aligned}
\]
construct a state estimate \(\hat{x}\) that minimizes the state estimation error covariance \(P(t)=E\left[(x-x)(x-x)^{T}\right]\).

The optimal solution is the Kalman filter with equations
\[
\begin{aligned}
& L(t)=\left(P(t) C^{T}(t)+\bar{N}\right) \\
& \dot{P}(t)=A(t) P(t)+P(t) A^{T}(t)+\bar{Q}(t)-L(t) \bar{R}(t) L^{T}(t) \\
& \dot{x}(t)=A(t) x(t)+B(t) u(t)+L(t)(y(t)-C(t) x(t)-D(t) u(t)),
\end{aligned}
\]
where
\[
\begin{aligned}
& \bar{Q}(t)=G(t) Q(t) G^{T}(t), \\
& \bar{R}(t)=R(t)+H(t) N(t)+N^{T}(t) H^{T}(t)+H(t) Q(t) H^{T}(t), \\
& \bar{N}(t)=G(t)\left(Q(t) H^{T}(t)+N(t)\right) .
\end{aligned}
\]

The Kalman filter uses the known inputs \(u\) and the measurements \(y\) to generate the state estimates \(\hat{x}\). If you want, the block can also output the estimates of the true plant output \(\hat{y}\).

The block implements the steady-state Kalman filter when the system matrices (A (t), \(B(t), C(t), D(t), G(t), H(t))\) and noise covariance matrices \((Q(t), R(t), N(t))\) are constant (specified in the Block Parameters dialog box). The steady-state Kalman filter uses a constant matrix \(P\) that minimizes the steady-state estimation error covariance and solves the associated continuous-time algebraic Riccati equation:
\[
P=\lim _{t \rightarrow \infty} E\left[(x-x)(x-x)^{T}\right] .
\]

\section*{Discrete-Time Estimation}

Given the discrete plant
\[
\begin{aligned}
& x[n+1]=A[n] x[n]+B[n] u[n]+G[n] w[n], \\
& y[n]=C[n] x[n]+D[n] u[n]+H[n] w[n]+v[n],
\end{aligned}
\]
with known inputs \(u\), white process noise \(w\) and white measurement noise \(v\) satisfying
\[
\begin{aligned}
& E[w[n]]=E[v[n]]=0, \\
& E\left[w[n] w^{T}[n]\right]=Q[n], \\
& E\left[v[n] v^{T}[n]\right]=R[n], \\
& E\left[w[n] v^{T}[n]\right]=N[n] .
\end{aligned}
\]

The estimator has the following state equation
\[
\hat{x}[n+1 \mid n]=A[n] \hat{x}[n \mid n-1]+B[n] u[n]+L[n](y[n]-C[n] \hat{x}[n \mid n-1]-D[n] u[n]),
\]
where the gain \(L[n]\) is calculated through the discrete Riccati equation:
\[
\begin{aligned}
& L[n]=\left(A[n] P[n] C^{T}[n]+\bar{N}[n]\right)\left(C[n] P[n] C^{T}[n]+\bar{R}[n]\right)^{-1}, \\
& M[n]=P[n] C^{T}[n]\left(C[n] P[n] C^{T}[n]+\bar{R}[n]\right)^{-1}, \\
& Z[n]=(I-M[n] C[n]) P[n](I-M[n] C[n])^{T}+M[n] \bar{R}[n] M^{T}[n], \\
& P[n+1]=\left(A[n]-\bar{N}[n] \bar{R}^{-1}[n] C[n]\right) Z\left(A[n]-\bar{N}[n] \bar{R}^{-1}[n] C[n]\right)^{T}+\bar{Q}[n]-N[n] \bar{R}^{-1}[n] N^{T}[n],
\end{aligned}
\]
where \(I\) is the identity matrix of appropriate size and
\[
\begin{aligned}
& \bar{Q}[\mathrm{n}]=G[\mathrm{n}] Q[\mathrm{n}] G^{T}[\mathrm{n}], \\
& \bar{R}[\mathrm{n}]=R[\mathrm{n}]+H[\mathrm{n}] N[\mathrm{n}]+N^{T}[\mathrm{n}] H^{T}[\mathrm{n}]+H[\mathrm{n}] Q[\mathrm{n}] H^{T}[\mathrm{n}], \\
& \bar{N}[\mathrm{n}]=G[\mathrm{n}]\left(Q[\mathrm{n}] H^{T}[\mathrm{n}]+N[\mathrm{n}],\right. \\
& \text { and } \\
& P[\mathrm{n}]=E\left[(x-x[n \mid n-1])(x-\hat{x}[n \mid n-1])^{T}\right], \\
& Z[\mathrm{n}]=E\left[(x-\hat{x}[n \mid n])(x-\hat{x}[n \mid n])^{T}\right],
\end{aligned}
\]

The steady-state Kalman filter uses a constant matrix \(P\) that minimizes the steady-state estimation error covariance and solves the associated discrete-time algebraic Riccati equation.

There are two variants of discrete-time Kalman filters:
- The current estimator generates the state estimates \(\hat{x}[n \mid n]\) using all measurement available, including \(y[n]\). The filter updates \(\hat{x}[n \mid n-1]\) with \(y[n]\) and outputs:
\[
\begin{aligned}
& \hat{x}[n \mid n]=\hat{x}[n \mid n-1]+M[n](y[n]-C[n] \hat{x}[n \mid n-1]-D[n] u[n]), \\
& \hat{y}[n \mid n]=C[n] \hat{x}[n \mid n]+D[n] u[n] .
\end{aligned}
\]
- The delayed estimator generates the state estimates \(\hat{x}[n \mid n-1]\) using measurements up to \(y[n-1]\). The filter outputs \(\hat{x}[n \mid n-1]\) as defined previously, along with the optional output \(\hat{y}[n \mid n-1]\)
\[
\hat{y}[n \mid n-1]=C[n] \hat{x}[n \mid n-1]+D[n] u[n]
\]

The current estimator has better estimation accuracy compared to the delayed estimator, which is important for slow sample times. However, it has higher computational cost, making it harder to implement inside control loops. More specifically, it has direct feedthrough. This leads to an algebraic loop if the Kalman filter is used in a feedback loop that does not contain any delays (the feedback loop itself also has direct feedthrough). The algebraic loop can impact the speed of simulation. You cannot generate code if your model contains algebraic loops.

The Kalman Filter block differs from the kalman command in the following ways:
- When calling kalman (sys, . .) , sys includes the G and H matrices. Specifically, sys.B has [B G] and sys.D has [D H]. When you provide a LTI variable to the Kalman Filter block, it does not assume that the LTI variable provided contains G and H. They are optional and separate.
- The kalman command outputs [yhat; xhat] by default. The block only outputs xhat by default.

\section*{Dialog Box and Parameters}

The following table summarizes the Kalman Filter block parameters, accessible via the Block Parameter dialog box.
\begin{tabular}{|c|c|}
\hline Task & Parameters \\
\hline Specify filter settings & \begin{tabular}{l}
- Time domain \\
- Use the current measurement \(y[n]\) to improve xhat[n]
\end{tabular} \\
\hline Specify the system model & Model source in Model Parameters tab \\
\hline Specify initial state estimates & Source in Model Parameters tab \\
\hline Specify noise characteristics & \begin{tabular}{l}
In Model Parameters tab: \\
- Use \(G\) and \(H\) matrices (default \(G=I\) and \(\mathrm{H}=0\)) \\
- Q, Time-invariant \(\mathbf{Q}\) \\
- R, Time-invariant \(\mathbf{R}\) \\
- N, Time-invariant \(\mathbf{N}\)
\end{tabular} \\
\hline Specify additional inports & \begin{tabular}{l}
In Options tab: \\
- Add input port u \\
- Add input port Enable to control measurement updates \\
- External reset
\end{tabular} \\
\hline Specify additional outports & In Options tab: \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Parameters \\
\hline & \begin{tabular}{ll}
\(\bullet\) & Output estimated model output y \\
Output state estimation error \\
covariance Z
\end{tabular} \\
\hline
\end{tabular}

\section*{Time domain}

Specify whether to estimate continuous-time or discrete-time states:
- Discrete-Time (Default) — Block estimates discrete-time states
- Continuous-Time - Block estimates continuous-time states

\section*{Use the current measurement \(\mathbf{y}[\mathrm{n}]\) to improve xhat[n]}

Use the current estimator variant of the discrete-time Kalman filter. When not selected, the delayed estimator (variant) is used.

This option is available only when Time Domain is Discrete-Time.

\section*{Model source}

Specify how the A, B, C, D matrices are provided to the block. Must be one of the following:
- Dialog: LTI State-Space Variable - Use the values specified in the LTI statespace variable. You must also specify the variable name in Variable. The sample time of the model must match the setting in the Time domain option, i.e. the model must be discrete-time if the Time domain is discrete-time.
- Dialog: Individual A, B, C, D matrices - Specify values in the following block parameters:
- A - Specify the A matrix. It must be real and square.
- B - Specify the B matrix. It must be real and have as many rows as the A matrix. This option is available only when Add input port \(\mathbf{u}\) is selected in the Options tab.
- C - Specify the C matrix. It must be real and have as many columns as the A matrix.
- D - Specify the D matrix. It must be real. It must have as many rows as the C matrix and as many columns as the B matrix. This option is available only when Add input port \(\mathbf{u}\) is selected in the Options tab.
- External - Specify the A, B, C, D matrices as input signals to the Kalman Filter block. If you select this option, the block includes additional input ports A, B, C and D. You must also specify the following in the block parameters:
- Number of states - Number of states to be estimated, specified as a positive integer. The default value is 2 .
- Number of inputs - Number of known inputs in the model, specified as a positive integer. The default value is 2 . This option is only available when Add input port \(\mathbf{u}\) is selected.
- Number of outputs - Number of measured outputs in the model, specified as a positive integer. The default value is 2 .

\section*{Sample Time}

Block sample time, specified as -1 or a positive scalar.
This option is available only when Time Domain is Discrete Time and Model Source is Dialog: Individual A, B, C, D matrices or External. The sample time is obtained from the LTI state-space variable if the Model Source is Dialog: LTI State-Space Variable.

The default value is -1 , which implies that the block inherits its sample time based on the context of the block within the model. All block input ports must have the same sample time.

\section*{Source}

Specify how to enter the initial state estimates and initial state estimation error covariance:
- Dialog - Specify the values directly in the dialog box. You must also specify the following parameters:
- Initial states \(\mathbf{x}[0]\) - Specify the initial state estimate as a real scalar or vector. If you specify a scalar, all initial state estimates are set to this scalar. If you specify a vector, the length of the vector must match with the number of states in the model.
- State estimation error covariance \(\mathbf{P}[0]\) (only when only when time-varying Kalman filter is used) - Specify the initial state estimation error covariance P[0] for discrete-time Kalman filter or \(\mathrm{P}(0)\) for continuous-time Kalman filter. Must be specified as one of the following:
- Real nonnegative scalar. P is an Ns-by-Ns diagonal matrix with the scalar on the diagonals. Ns is the number of states in the model.
- Vector of real nonnegative scalars. P is an Ns-by-Ns diagonal matrix with the elements of the vector on the diagonals of P .
- Ns-by-Ns positive semi-definite matrix.
- External - Inherit the values from input ports. The block includes an additional input port X0. A second additional input port P0 is added when time-varying Kalman filter is used. X0 and P0 must satisfy the same conditions described previously when you specify them in the dialog box.

\section*{Use the Kalman Gain K from the model variable}

Specify whether to use the pre-identified Kalman Gain contained in the state-space plant model. This option is available only when:
- Model Source is Dialog: LTI State-Space Variable and Variable is an identified state-space model (idss) with a nonzero K matrix.
- Time Invariant Q, Time Invariant R and Time Invariant N options are selected.

If the Use \(\mathbf{G}\) and \(\mathbf{H}\) matrices (default \(\mathbf{G}=\mathbf{I}\) and \(\mathbf{H}=\mathbf{0}\)) option is selected, Time Invariant G and Time Invariant H options must also be selected.

\section*{Use \(\mathbf{G}\) and H matrices (default \(\mathrm{G}=\mathrm{I}\) and \(\mathrm{H}=0\))}

Specify whether to use non-default values for the G and H matrices. If you select this option, you must specify:
- G - Specify the G matrix. It must be a real matrix with as many rows as the A matrix. The default value is 1 .
- Time-invariant G - Specify if the G matrix is time invariant. If you unselect this option, the block includes an additional input port G.
- H - Specify the H matrix. It must be a real matrix with as many rows as the C matrix and as many columns as the G matrix. The default value is 0 .
- Time-invariant H - Specify if the H matrix is time invariant. If you unselect this option, the block includes an additional input port G.
- Number of process noise inputs - Specify the number of process noise inputs in the model. The default value is 1 .

This option is available only when Time-invariant G and Time-invariant H are unselected. Otherwise, this information is inferred from the G or H matrix.

\section*{Q}

Process noise covariance matrix, specified as one of the following:
- Real nonnegative scalar. Q is an Nw -by-Nw diagonal matrix with the scalar on the diagonals. Nw is the number of process noise inputs in the model.
- Vector of real nonnegative scalars. Q is an Nw-by-Nw diagonal matrix with the elements of the vector on the diagonals of Q .
- Nw-by-Nw positive semi-definite matrix.

\section*{Time Invariant Q}

Specify if the Q matrix is time invariant. If you unselect this option, the block includes an additional input port Q .

\section*{R}

Measurement noise covariance matrix, specified as one of the following:
- Real positive scalar. R is an Ny-by-Ny diagonal matrix with the scalar on the diagonals. Ny is the number of measured outputs in the model.
- Vector of real positive scalars. R is an Ny-by-Ny diagonal matrix with the elements of the vector on the diagonals of \(R\).
- Ny-by-Ny positive-definite matrix.

\section*{Time Invariant \(\mathbf{R}\)}

Specify if the \(R\) matrix is time invariant. If you unselect this option, the block includes an additional input port \(R\).

\section*{N}

Process and measurement noise cross-covariance matrix. Specify it as a Nw-by-Ny matrix. The matrix [\(\mathrm{Q} \mathrm{N} ; \mathrm{N}^{\mathrm{T}} \mathrm{R}\)] must be positive definite.

\section*{Time Invariant \(\mathbf{N}\)}

Specify if the N matrix is time invariant. If you unselect this option, the block includes an additional input port N .

\section*{Add input port u}

Select this option if your model contains known inputs \(u(t)\) or \(u[k]\). The option is selected by default. Unselecting this option removes the input port \(u\) from the block and removes the \(\mathbf{B}, \mathbf{D}\) and Number of inputs parameters from the block dialog box.

\section*{Add input port Enable to control measurement updates}

Select this option if you want to control the measurement updates. The block includes an additional inport Enable. The Enable input port takes a scalar signal. This option is unselected by default.

By default the block does measurement updates at each time step to improve the state and output estimates \(\hat{x}\) and \(\hat{y}\) based on measured outputs. The measurement update is skipped for the current sample time when the signal in the Enable port is 0 . Concretely, the equation for state estimates become \(\dot{\hat{x}}(t)=A(t) \hat{x}(t)+B(t) u(t)\) for continuous-time Kalman filter and \(\hat{x}[n+1 \mid n]=A[n] \hat{x}[n \mid n-1]+B[n] u[n]\) for discrete-time.

\section*{External Reset}

Option to reset estimated states and parameter covariance matrix using specified initial values.

Suppose you reset the block at a time step, \(t\). If the block is enabled at \(t\), the software uses the initial parameter values specified either in the block dialog or the input ports P0 and X0 to estimate the states. In other words, at t , the block performs a time update and
if it is enabled, a measurement update after the reset. The block outputs these updated estimates.

Specify one of the following:
- None (Default) - Estimated states \(\hat{x}\) and state estimation error covariance matrix P values are not reset.
- Rising - Triggers a reset when the control signal rises from a negative or zero value to a positive value. If the initial value is negative, rising to zero triggers a reset.
- Falling - Triggers a reset when the control signal falls from a positive or a zero value to a negative value. If the initial value is positive, falling to zero triggers a reset.
- Either - Triggers a reset when the control signal is either rising or falling.
- Level - Triggers a reset in either of these cases:
- The control signal is nonzero at the current time step.
- The control signal changes from nonzero at the previous time step to zero at the current time step.
- Level hold - Triggers reset when the control signal is nonzero at the current time step.

When you choose an option other than None, a Reset input port is added to the block to provide the reset control input signal.

\section*{Output estimated model output y}

Add \(\hat{y}\) output port to the block to output the estimated model outputs. The option is unselected by default.

\section*{Output estimated model output \(P\) or \(Z\)}

Add P output port or Z output port to the block. The Z matrix is provided only when Time Domain is Discrete Time and the Use the current measurement \(y[n]\) to improve xhat[\(n\)] is selected. Otherwise, the P matrix, as described in the "Description" on page 2-23 section previously, is provided.

The option is unselected by default.

\section*{Ports}
\begin{tabular}{|l|ll|}
\hline Port Name & \begin{tabular}{l}
Port \\
Type \\
(In/ \\
Out)
\end{tabular} & Description \\
\hline u (Optional) & In & Known inputs, specified as a real scalar or vector. \\
\hline y & In & Measured outputs, specified as a real scalar or vector. \\
\hline xhat & Out & Estimated states, returned as a real scalar or vector. \\
\hline \begin{tabular}{l}
yhat \\
(Optional)
\end{tabular} & Out & Estimated outputs, returned as a real scalar or vector. \\
\hline \begin{tabular}{l}
P or Z \\
(Optional)
\end{tabular} & Out & State estimation error covariance, returned as a matrix. \\
\hline A (Optional) & In & A matrix, specified as a real matrix. \\
\hline B (Optional) & In & B matrix, specified as a real matrix. \\
\hline C (Optional) & In & C matrix, specified as a real matrix. \\
\hline D (Optional) & In & D matrix, specified as a real matrix. \\
\hline G (Optional) & In & G matrix, specified as a real matrix. \\
\hline H (Optional) & In & H matrix, specified as a real matrix. \\
\hline Q (Optional) & In & Q matrix, specified as a real scalar, vector or matrix. \\
\hline R (Optional) & In & R matrix, specified as a real scalar, vector or matrix. \\
\hline N (Optional) & In & N matrix, specified as a real matrix. \\
\hline P0 (Optional) & In & \begin{tabular}{l}
P matrix at initial time, specified as a real scalar, vector, or \\
matrix.
\end{tabular} \\
\hline X0 (Optional) & In & Initial state estimates, specified as a real scalar or vector. \\
\hline \begin{tabular}{l}
Enable \\
(Optional)
\end{tabular} & In & \begin{tabular}{l}
Control signal to enable measurement updates, specified as a \\
real scalar.
\end{tabular} \\
\hline \begin{tabular}{l}
Reset \\
(Optional)
\end{tabular} & In & Control signal to reset state estimates, specified as a real scalar. \\
\hline
\end{tabular}

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point (for discrete-time Kalman filter only)

\section*{Note:}
- All input ports except Enable and Reset must have the same data type (single or double).
- Enable and Reset ports support single, double, int8, uint8, int16, uint16, int32, uint32, and boolean data types.

\section*{Limitations}
- The plant and noise data must satisfy:
- \((C, A)\) detectable
- \(\bar{R}>0\) and \(\bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T} \geq 0\)
- \(\left(A-\bar{N} \bar{R}^{-1} C, \bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T}\right.\)) has no uncontrollable mode on the imaginary axis (or unit circle in discrete time) with the notation
\[
\begin{aligned}
& \bar{Q}=G Q G^{T} \\
& \bar{R}=R+H N+N^{T} H^{T}+H Q H^{T} \\
& \bar{N}=G\left(Q H^{T}+N\right)
\end{aligned}
\]
- The continuous-time Kalman filter cannot be used in Function-Call Subsystems or Triggered Subsystems.

\section*{References}
[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990.
[2] Lewis, F., Optimal Estimation, John Wiley \& Sons, Inc, 1986.

\section*{See Also}
kalman | Recursive Least Squares Estimator | Recursive Polynomial Model Estimator

\section*{Related Examples}
- "State Estimation Using Time-Varying Kalman Filter"
- "Preprocess Online Estimation Data"
- "Validate Online Estimation Results"
- "Generate Online Estimation Code"

\section*{More About}
- "Algorithms for Recursive Estimation"

\section*{Model Type Converter}

Convert polynomial model coefficients to state-space model matrices

\section*{Library}

Estimators

\section*{Description}

Use the Model Type Converter block to convert the ARX, ARMAX, OE, or BJ model coefficients into state-space model matrices.

The block inport, \(u\), requires a bus. The number of elements depends on the input polynomial model type:
- ARX - A, B
- ARMAX - A, B, C
- OE-B, F
- BJ - B,C, D, F

These bus elements must contain vectors of the estimated coefficient values as outputted by the Recursive Polynomial Model Estimator block. The coefficient values can vary with time. The Model Type Converter block converts these coefficients into the A, B, C, and D matrices of a discrete-time state-space model. The Model Type Converter block outport, y , returns a bus with elements that correspond to the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D matrices of the state-space model. If the signals in \(u\) are time-varying, then the state-space matrices are time-varying too.

You can also estimate a state-space model online by using the Recursive Polynomial Model Estimator and Model Type Converter blocks together. Connect the outport of the Recursive Polynomial Model Estimator block to the inport of the Model Type Converter block to obtain online values of the state-space matrices. The conversion ignores the noise component of the models. In other words, the state-space matrices only capture the \(y(t) /\) \(\mathrm{u}(\mathrm{t})\) relationship.

\section*{Dialog Box and Parameters}

\section*{Function Block Parameters: Model Type Converter}

Model Type Converter
Convert discrete-time polynomial model coefficients (ARX, ARMAX, \(\mathrm{OE}, \mathrm{BJ}\)) to state-space matrices.

Options
Input model type: ARX
OK Cancel Help Apply

\section*{Input model type}

Specify the model type coefficients to convert to state-space model matrices. Specify one of the following model types:
- ARX
- ARMAX
- OE
- BJ

\section*{Ports}
\begin{tabular}{|l|ll|}
\hline Port & \begin{tabular}{l}
Port \\
Type \\
(In/ \\
Out)
\end{tabular} & Description \\
\hline u & In & \begin{tabular}{l}
Estimated A, B,, C, D and F polynomial coefficients, specified as \\
a bus with elements: A, B, C, D and F.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline Port & \begin{tabular}{l}
Port \\
Type \\
(In/ \\
Out)
\end{tabular} & Description \\
\hline y & Out & \begin{tabular}{l}
State-space model, returned as a bus with elements that \\
correspond to the A, B, C, and D matrices.
\end{tabular} \\
\hline
\end{tabular}

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point

\section*{See Also}

Recursive Polynomial Model Estimator

\section*{Recursive Least Squares Estimator}

Estimate model coefficients using recursive least squares (RLS) algorithm

\section*{Library}

Estimators

\section*{Description}

Use the Recursive Least Squares Estimator block to estimate the parameters of a system that is linear in the parameters. Such a system has the following form:
\(y(t)=H(t) \theta(t)\)
\(y\) and \(H\) are known quantities that you provide to the block to estimate \(\theta\). The block estimates \(\theta\) using the recursive least squares algorithm (see [1]).

For a given time step, \(t, y(t)\) and \(H(t)\) correspond to the Output and Regressors inports of the Recursive Least Squares Estimator block, respectively. \(\theta(t)\) corresponds to the Parameters outport. \(y(t)\), must be a real-valued scalar. \(H\) and \(\theta\) are real-valued vectors of length \(N\), where \(N\) is the number of parameters to be estimated.

For example, suppose you want to estimate a scalar gain, \(\theta\), in the system \(y=h^{2} \theta\). Here, \(y\) is linear with respect to \(\theta\). You can use the Recursive Least Squares Estimator block to estimate \(\theta\). Specify \(y\) and \(h^{2}\) as inputs to the Output and Regressor inports.

\section*{Dialog Box and Parameters}

\section*{Model Parameters}

Initial Estimate

Initial guess of the values of the parameters to be estimated, specified as one of the following options (each option can change the block dialog):

\section*{- None}
(Default) No initial guess of parameter values is specified. The software uses 1 as the initial guess for each parameter value.

Specify the following:

\section*{Number of Parameters}

Number of parameters to be estimated, specified as a positive integer.
The default value is 2 .

\section*{Parameter Covariance Matrix}

Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonnegative scalars, \(\left[a_{1}, \ldots, a_{N}\right]\) - Covariance matrix is an \(N\) -by- \(N\) diagonal matrix, with \(\left[a_{1}, \ldots, a_{N}\right]\) as the diagonal elements.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) is the number of parameters to be estimated.
This option is applicable only when Estimation Method is either Forgetting Factor or Kalman Filter.

The default value is 1 e 4 .

\section*{- Internal}

Specify the initial guess of parameter values in the block dialog. Specify the following:

\section*{Initial Parameter Values}

Initial guess of the values of the parameters to be estimated, specified as a scalar or vector of length \(N . N\) is the number of parameters to be estimated.

The default value is [\(\left.\begin{array}{ll}1 & 1\end{array}\right]\).

\section*{Parameter Covariance Matrix}

Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonnegative scalars, \(\left[a_{1}, \ldots, a_{N}\right]\) - Covariance matrix is an \(N\) -by- \(N\) diagonal matrix, with \(\left[a_{1}, \ldots, \alpha_{N}\right]\) as the diagonal elements.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) is the number of parameters to be estimated.
This option is applicable only when Estimation Method is either Forgetting Factor or Kalman Filter.

The default value is 1 e 4 .

\section*{- External}

Specify the initial guess of parameter values as an input signal to the Recursive Least Squares Estimator block. If you select this option, the block includes additional inports:
- InitialParameters - Initial guess of the values of the parameters to be estimated, specified as a scalar or vector of length \(N . N\) is the number of parameters to be estimated.
- InitialCovariance - Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonnegative scalars, \(\left[\alpha_{1}, \ldots, \alpha_{N}\right]\) - Covariance matrix is an \(N\) -by- \(N\) diagonal matrix, with \(\left[\alpha_{1}, \ldots, a_{N}\right]\) as the diagonal elements.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) is the number of parameters to be estimated.

\section*{The InitialCovariance inport is included only when Estimation Method is either Forgetting Factor or Kalman Filter.}

You must also specify the following in the block dialog:

\section*{Number of Parameters}

Number of parameters to be estimated, specified as a positive integer.
Suppose you specify a vector as an input to the InitialParameters inport. The length of this vector must match the value specified in Number of Parameters.

The default value is 2 .

\section*{Sample Time}

Block sample time, specified as -1 or a positive scalar.
The default value is -1 . The block inherits its sample time based on the context of the block within the model.

\section*{Algorithm and Block Options}

\section*{Algorithm Options}

\section*{Estimation Method}

Recursive estimation algorithm, specified as one of the following (each option can change the block dialog):
- Forgetting Factor - (Default) Forgetting factor algorithm

If you select this option, you must specify the Forgetting Factor, \(\lambda\), as a scalar in the (01] range. \(\lambda\) specifies the measurement window relevant for parameter estimation. Suppose the system remains approximately constant over \(T_{0}\) samples. You can choose \(\lambda\) such that:
\[
T_{0}=\frac{1}{1-\lambda}
\]

Setting \(\lambda=1\) corresponds to "no forgetting" and estimating constant coefficients. Setting \(\lambda<1\) implies that past measurements are less significant for parameter estimation and can be "forgotten." Set \(\lambda<1\) to estimate time-varying coefficients. Typical choices of \(\lambda\) are in the [0.98 0.995] range.

The default value is 1 .
- Kalman Filter - Kalman filter algorithm

If you select this option, you must specify the Noise Covariance Matrix as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonnegative scalars, \(\left[a_{1}, \ldots, a_{N}\right]\) - Covariance matrix is an \(N\) -by- \(N\) diagonal matrix, with \(\left[a_{1}, \ldots, a_{N}\right]\) as the diagonal elements.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) is the number of parameters to be estimated.
0 values in the noise covariance matrix correspond to estimating constant coefficients. Values larger than 0 correspond to time-varying parameters. Large values correspond to rapidly changing parameters.

The default value is 1 .
- Normalized Gradient - Normalized gradient adaptation algorithm

If you select this option, you must specify the Adaptation Gain, \(\gamma\), as a real, positive scalar. \(\gamma\) is directly proportional to the relative information content in the measurements. That is, when your measurements are trustworthy, specify a large value for \(\gamma\), and vice versa.

The default value is 1 .
- Gradient - Unnormalized gradient adaptation algorithm

If you select this option, you must specify the Adaptation Gain, \(\gamma\), as a real, positive scalar. \(\gamma\) is directly proportional to the relative information content in the measurements. That is, when your measurements are trustworthy, specify a large value for \(\gamma\), and vice versa.

The default value is 1 .
For more information about these algorithms, see "Recursive Algorithms for Online Estimation".

\section*{Block Options}

\section*{Output estimation error}

Add Error outport to the block. Use this signal to validate the estimation.
For a given time step, \(t\), the estimation error is calculated as:
\(e(t)=y(t)-y e s t(t)\).
\(\sqrt{ }\) On
Add Error outport.
\(\square_{\text {Off }}\)
(Default) Do not add Error outport.

\section*{Output parameter covariance matrix}

Add Covariance outport to the block. Use this signal to examine parameter estimation uncertainty.

This option is not available when Estimation Method is either Normalized Gradient or Gradient.

On
Add Covariance outport.
\(\square_{\text {Off }}\)
(Default) Do not add Covariance outport.

\section*{Add enable port}

Add Enable inport to the block. Use this input signal to specify a control signal that enables or disables parameter estimation. The block estimates the parameter values for each time step that parameter estimation is enabled. If you disable parameter
estimation at a given step, \(t\), then the software does not update the parameters for that time step. Instead, the block outputs the last estimated parameter values. Use this option, for example, to disable parameter estimation when the system enters a mode where the parameter values do not vary with time.

Add Enable inport.

\section*{\(\ulcorner\) off}
(Default) Do not add Enable inport.

\section*{External reset}

Option to reset estimated parameters and parameter covariance matrix using specified initial values.

Suppose you reset the block at a time step, \(t\). If the block is enabled at \(t\), the software uses the initial parameter values specified in Initial Estimate to estimate the parameter values. In other words, at \(t\), the block performs a parameter update using the initial estimate and the current values of the inports. The block outputs these updated parameter value estimates using the Parameters outport.

If the block is disabled at \(t\) and you reset the block, the block outputs the values specified in Initial Estimate.

Use this option, for example, when you reset the input because it did not excite the system as needed, resulting in poor estimation results.

Specify this option as one of the following:
- None - (Default) Estimated parameters and covariance matrix values are not reset.
- Rising - Triggers reset when the control signal rises from a negative or zero value to a positive value. If the initial value is negative, rising to zero triggers reset.
- Falling - Triggers reset when the control signal falls from a positive or a zero value to a negative value. If the initial value is positive, falling to zero triggers reset.
- Either - Triggers reset when the control signal is either rising or falling.
- Level - Triggers reset in either of these cases:
- Control signal is nonzero at the current time step
- Control signal changes from nonzero at the previous time step to zero at the current time step
- Level hold - Triggers reset when the control signal is nonzero at the current time step.

When you choose any option other than None, the software adds a Reset inport to the block. You provide the reset control input signal to this inport.

\section*{Ports}
\begin{tabular}{|l|ll|}
\hline Port Name & \begin{tabular}{l}
Port \\
Type
\end{tabular} & Description \\
\hline Regressors & In & \(H(t)\), specified as a real scalar or vector. \\
\hline Output & In & \(y(t)\), specified as a real scalar signal. \\
\hline Parameters & Out & \(\theta(t)\), returned as a vector of the same length as \(H(t)\). \\
\hline \begin{tabular}{l}
Enable \\
(Optional)
\end{tabular} & In & \begin{tabular}{l}
Control signal to enable parameter estimation, specified as a \\
scalar.
\end{tabular} \\
\hline \begin{tabular}{l}
Reset \\
(Optional)
\end{tabular} & In & \begin{tabular}{l}
Control signal to reset parameter estimation, specified as a \\
scalar.
\end{tabular} \\
\hline \begin{tabular}{l}
InitialParamete \\
(Optional)
\end{tabular} & In & \begin{tabular}{l}
Initial guess of the values of the parameters to be estimated, \\
specified as a scalar or vector.
\end{tabular} \\
\hline \begin{tabular}{l}
InitialCovarian \\
(Optional)
\end{tabular} & In & \begin{tabular}{l}
Initial covariance of parameters, specified as a real positive \\
scalar, vector of real positive scalars, or symmetric positive- \\
definite matrix.
\end{tabular} \\
\hline \begin{tabular}{l}
Error \\
(Optional)
\end{tabular} & Out & \begin{tabular}{l}
Estimation error, returned as a scalar. \\
\hline \begin{tabular}{l}
Covariance \\
(Optional)
\end{tabular} \\
Out
\end{tabular} \begin{tabular}{l}
Covariance of estimated parameters, returned as an \(N\)-by- \(N\) \\
matrix. \(N\) is the number of parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point

Note: The Regressors and Output inports must have matching data types.

\section*{References}
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999, pp. 363-369.

\section*{See Also}

Kalman Filter | Recursive Polynomial Model Estimator

\section*{Related Examples}
- "Online Recursive Least Squares Estimation"
- "Preprocess Online Estimation Data"
- "Validate Online Estimation Results"
- "Generate Online Estimation Code"

\section*{More About}
- "Algorithms for Recursive Estimation"

\section*{Recursive Polynomial Model Estimator}

Estimate input-output and time-series model coefficients

\section*{Library}

Estimators

\section*{Description}

Use the Recursive Polynomial Model Estimator block to estimate discrete-time inputoutput polynomial and time-series models.

These model structures are:
- \(\operatorname{ARX}-A(q) y(t)=e(t)\)
- \(\operatorname{ARMAX}-A(q) y(t)=B(q) u(t-n k)+C(q) e(t)\)
- \(\mathrm{AR}-A(q) y(t)=C(q) e(t)\)
- ARMA \(-A(q) y(t)=B(q) u(t-n k)+C(q) e(t)\)
- \(\mathrm{OE}-y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+e(t)\)

BJ _- \(\quad y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+\frac{C(q)}{D(q)} e(t)\)
\(q\) is the time-shift operator and \(n k\) is the delay. \(u(t)\) is the input, \(y(t)\) is the output, and \(e(t)\) is the error. For MISO models, there are as many \(B(q)\) polynomials as the number of inputs. The orders of these models are:
- \(n a-1+a_{1} q^{-1}+a_{2} q^{-2}+\ldots+a_{n a} q^{-n a}\)
- \(n b-b_{1}+b_{2} q^{-1}+b_{3} q^{-2}+\ldots+b_{n b} q^{-(n b-1)}\)
- \(n c-1+c_{1} q^{-1}+c_{2} q^{-2}+\ldots+c_{n c} q^{-n c}\)
- \(n d-1+d_{1} q^{-1}+d_{2} q^{-2}+\ldots+d_{n d} q^{-n d}\)
- \(n f-1+f_{1} q^{-1}+f_{2} q^{-2}+\ldots+f_{n f} q^{-n f}\)

The orders \(n a, n b, n c, n d, n f\) and delay, \(n k\), are known a priori and fixed. These are provided through the Model Parameters tab of the block dialog. \(u(t)\) and \(y(t)\) are provided through the Inputs and Outputs inports, respectively. The block estimates the \(\mathrm{A}(\mathrm{q}), \mathrm{B}(\mathrm{q}), \mathrm{C}(\mathrm{q}), \mathrm{D}(\mathrm{q})\) and \(\mathrm{F}(\mathrm{q})\) coefficients and outputs them in the Parameters outport. This outport provides a bus signal with the following elements:
- A — Vector containing \(\left[1 a_{1}(t) \ldots a_{n a}(t)\right]^{\mathrm{T}}\).
- B - Vector containing \(\left[z e r o s(1, n k) b_{0}(t) \ldots 1 \ldots n b\right]^{\mathrm{T}}\). B is a matrix if the estimated model is MISO.
- \(\mathrm{C}-\) Vector containing \(\left[1 c_{1}(t) \ldots c_{n c}(t)\right]^{\mathrm{T}}\).
- D - Vector containing \(\left[1 d_{1}(t) \ldots d_{n d}(t)\right]^{\mathrm{T}}\).
- F - Vector containing \(\left[1 f_{1}(t) \ldots f_{n f}(t)\right]^{\mathrm{T}}\).

For example, suppose you want to estimate the coefficients for the following SISO ARMAX model:
\(y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)=b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+c_{1} e(t-1)+\ldots+c_{n c} e(t-n c)\)
\(y, u, n a, n b, n c, n d, n f\) and \(n k\) are known quantities that you provide to the block. The block estimates the \(A, B, C, D\) and \(F\) parameter values.

For a given time step, \(t\), specify \(y\) and \(u\) as inputs to the Output and Inputs inports, respectively. Specify the \(n a, n b, n c\), and \(n k\) values in the Model Parameters tab of the block dialog. The block estimates the \(A, B, C, D\) and \(F\) parameter values and outputs these estimated values using the Parameters outport.

\section*{Dialog Box and Parameters}

\section*{Model Structure}

Estimated model structure, specified as one of the following:
- ARX - SISO or MISO ARX model.
- ARMAX - SISO ARMAX model.
- OE - SISO OE model.
- BJ - SISO BJ model.
- AR - Time-series AR model.
- ARMA - Time-series ARMA model.

\section*{Model Parameters}

\section*{Initial Estimate}

Initial guess of the values of the parameters to be estimated, specified as one of the following options:

\section*{- None}

\section*{Number of Parameters in A(q) (na)}

Number of estimated parameters in the \(A(q)\) polynomial, specified as a positive scalar integer.

The default value is 1 .

\section*{Number of Parameters in B(q) (nb)}

Number of estimated parameters in the \(B(q)\) polynomial, specified as a vector of positive integers.

For MISO systems, specify \(B(q)\) as a vector with elements specifying the order for each input. (Applicable for only ARX models.)

The default value is 1 .

\section*{Number of Parameters in C(q) (nc)}

Number of estimated parameters in the \(C(q)\) polynomial, specified as a positive scalar integer.

This option is applicable for ARMA, ARMAX and BJ models only.

The default value is 1 .

\section*{Number of Parameters in D(q) (nd)}

Number of estimated parameters in the \(D(q)\) polynomial, specified as a positive scalar integer.

This option is applicable for BJ models only.
The default value is 1 .

\section*{Number of Parameters in F(q) (nf)}

Number of estimated parameters in the \(F(q)\) polynomial, specified as a positive scalar integer.

This option is applicable for OE and BJ models only.
The default value is 1 .

\section*{Input Delay (nk)}

Input-output delay, expressed as fixed leading zeros of the \(\mathrm{B}(\mathrm{q})\) polynomial, specified as a vector of positive integers.

For MISO systems, specify \(n k\) as a vector with elements specifying the delay for each input. (Applicable for only ARX models.)

This vector is of length \(N u\), where \(N u\) is the number of inputs.
The default value is 1 .

\section*{Parameter Covariance Matrix}

Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonengative scalars, \([\alpha(a), \alpha(b), \alpha(c, \alpha(d), \alpha(f)]\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \([\alpha(a), a(b), a(c), a(d), a(f)]\) as the diagonal elements. \(\alpha(\alpha)\) is a vector of the covariance for each coefficient of the \(A\) polynomial. Similarly, \(\alpha(b), \alpha(c), \alpha(d)\) and \(\alpha(f)\) are vectors containing the covariance of the coefficients of the \(B, C, D\) and \(F\) polynomials, respectively.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) can be one of the following:
- \(\mathrm{AR}-N=n a\)
\[
\operatorname{ARX}-N=n a+\sum_{i=1}^{N_{u}} n b_{i}
\]
- ARMA \(-N=n a+n c\)
- ARMAX \(-N=n a+n b+n c\)
- \(\mathbf{O E}-N=n b+n f\)
- \(\mathbf{B J}-N=n b+n c+n d+n f\)

This option is applicable only when Estimation Method is either Forgetting Factor or Kalman Filter.

The default value is 1 e 4 .

\section*{- Internal}

Specify the initial guess of the parameter values in the block dialog. Specify the following:

\section*{Initial A(q)}

Initial guess of the values of the parameters to be estimated for the \(A(q)\) polynomial (applies only to AR, ARX, ARMA and ARMAX models). Must be a vector of length \(n a+1\). The leading coefficient of A must be 1 .

The default value is [1 eps].

\section*{Initial B(q)}

Initial guess of the values of the parameters to be estimated for the \(B(q)\) polynomial (applies only to ARX, ARMAX, OE, BJ models). Must be a vector of length \(n b+n k\).

The leading zeros in \(B(q)\) are counted and interpreted as \(n k\). Those zeros are fixed throughout the estimation. \(n b\) is the number of elements after the first nonzero element in \(B(q)\). The block estimates the value of these elements.

For example:
- [0 eps] corresponds to \(n k=1\) and \(n b=1\)
- [0 0 eps] corresponds to \(n k=2\) and \(n b=1\)
- [0 0 eps 0 eps] corresponds to \(n k=2\) and \(n b=3\)

The default value is [0 eps].

\section*{Initial C(q)}

Initial guess of the values of the parameters to be estimated for the \(C(q)\) polynomial, specified as a vector of length \(n c+1\). The leading coefficient of \(C(q)\) must be 1 .

This option is applicable for ARMAX, ARMA and BJ models.
The default value is [1 eps].

\section*{Initial \(\mathbf{D}(\mathbf{q})\)}

Initial guess of the values of the parameters to be estimated for the \(D(q)\) polynomial, specified as a vector of length \(n d+1\). The leading coefficient of \(D(q)\) must be 1 .

This option is applicable for BJ models.
The default value is [1 eps].

\section*{Initial F(q)}

Initial guess of the values of the parameters to be estimated for the \(F(q)\) polynomial, specified as a vector of length \(n f+1\). The leading coefficient of \(F(q)\) must be 1 .

This option is applicable for OE and BJ models.
The default value is [1 eps].

\section*{Parameter Covariance Matrix}

Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonengative scalars, \([\alpha(a), \alpha(b), \alpha(c, \alpha(d), \alpha(f)]\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \([\alpha(a), a(b), \alpha(c), \alpha(d), a(f)]\) as the diagonal elements. \(\alpha(\alpha)\) is a vector of the covariance for each coefficient of the \(A\) polynomial. Similarly, \(\alpha(b), a(c), \alpha(d)\) and \(a(f)\) are vectors containing the covariance of the coefficients of the \(B, C, D\) and \(F\) polynomials, respectively.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) can be one of the following:
- \(\mathrm{AR}-N=n a\)
\[
\operatorname{ARX}-N=n a+\sum_{i=1}^{N_{u}} n b_{i}
\]
- ARMA \(-N=n a+n c\)
- ARMAX \(-N=n a+n b+n c\)
- \(\mathrm{OE}-N=n b+n f\)
- \(\mathrm{BJ}-N=n b+n c+n d+n f\)

This option is applicable only when Estimation Method is either Forgetting Factor or Kalman Filter.

The default value is 1 e 4 .

\section*{External}

Specify the initial guess of parameter values as an input signal to the Recursive Polynomial Model Estimator block. If you select this option, the block includes additional inports:
- InitialParameters - Initial guess of the values of the parameters to be estimated, specified as a bus with elements A, B, C, D and F as required by the model type. For a description of these signals, see the Internal option description.
- Initial Covariance - Initial covariance of parameters, specified as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonengative scalars, \([\alpha(\alpha), \alpha(b), \alpha(c, \alpha(d), \alpha(f)]\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \([\alpha(a), a(b), \alpha(c), a(d), a(f)]\) as the diagonal elements. \(\alpha(\alpha)\) is a vector of the covariance for each coefficient of the \(A\) polynomial. Similarly, \(\alpha(b), \alpha(c), a(d)\) and \(a(f)\) are vectors containing the covariance of the coefficients of the \(B, C, D\) and \(F\) polynomials, respectively.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) can be one of the following:
- \(\mathrm{AR}-N=n a\)
\(\operatorname{ARX}-N=n a+\sum_{i=1}^{N_{u}} n b_{i}\)
- ARMA \(-N=n a+n c\)
- ARMAX \(-N=n a+n b+n c\)
- \(\mathrm{OE}-N=n b+n f\)
- \(\mathbf{B J}-N=n b+n c+n d+n f\)

The InitialCovariance inport is included only when Estimation Method is either Forgetting Factor or Kalman Filter.

You must also specify the following in the block dialog:

\section*{Number of Parameters in A(q) (na)}

Number of parameters to be estimated for the \(A(q)\) polynomial, specified as a positive integer.

The default value is 1 .

\section*{Number of Parameters in B(q) (nb)}

Number of parameters to be estimated for the \(B(q)\) polynomial, specified as a positive integer.

For MISO systems, specify \(B(q)\) as a vector with elements specifying the order for each input. (Applicable for only ARX models.)

The default value is 1 .

\section*{Number of Parameters in C(q) (nc)}

Number of parameters to be estimated for the \(C(q)\) polynomial, specified as a positive integer.

This option is applicable for ARMA, ARMAX and BJ models only.
The default value is 1 .

\section*{Number of Parameters in D(q) (nd)}

Number of parameters to be estimated in the \(D(q)\) polynomial, specified as a positive scalar integer.

This option is applicable for BJ models only.
The default value is 1 .

\section*{Number of Parameters in F(q) (nf)}

Number of parameters to be estimated in the \(F(q)\) polynomial, specified as a positive scalar integer.

This option is applicable for OE and BJ models only.
The default value is 1 .

\section*{Input Delay (nk)}

Input-output delay, expressed as fixed leading zeros of the \(\mathrm{B}(\mathrm{q})\) polynomial, specified as a vector of positive integers.

For MISO systems, specify \(n k\) as a vector with elements specifying the delay for each input. (Applicable for only ARX models.)

This vector is of length \(N u\), where \(N u\) is the number of inputs.
The default value is 1 .
Default: 'None'

\section*{Sample Time}

Block sample time, specified as -1 or a positive scalar.
The default value is -1 . The block inherits its sample time based on the context of the block within the model.

\section*{Algorithm and Block Options}

\section*{Algorithm Options}

\section*{Estimation Method}

Recursive estimation algorithm, specified as one of the following (each option can change the block dialog):
- Forgetting Factor - (Default) Forgetting factor algorithm

If you select this option, you must specify the Forgetting Factor, \(\lambda\), as a scalar in the (01 1] range. \(\lambda\) specifies the measurement window relevant for parameter estimation. Suppose the system remains approximately constant over \(T_{0}\) samples. You can choose \(\lambda\) such that:
\(T_{0}=\frac{1}{1-\lambda}\)
Setting \(\lambda=1\) corresponds to "no forgetting" and estimating constant coefficients. Setting \(\lambda<1\) implies that past measurements are less significant for parameter estimation and can be "forgotten." Set \(\lambda<1\) to estimate time-varying coefficients. Typical choices of \(\lambda\) are in the [0.98 0.995] range.

The default value is 1 .
- Kalman Filter - Kalman filter algorithm

If you select this option, you must specify the Noise Covariance Matrix as one of the following:
- Real nonnegative scalar, \(a\) - Covariance matrix is an \(N\)-by- \(N\) diagonal matrix, with \(\alpha\) as the diagonal elements.
- Vector of real nonnegative scalars, \(\left[a_{1}, \ldots, a_{N}\right]\) - Covariance matrix is an \(N\) -by- \(N\) diagonal matrix, with \(\left[a_{1}, \ldots, a_{N}\right]\) as the diagonal elements.
- \(N\)-by- \(N\) symmetric positive semi-definite matrix.
\(N\) is the number of parameters to be estimated.
0 values in the noise covariance matrix correspond to estimating constant coefficients. Values larger than 0 correspond to time-varying parameters. Large values correspond to rapidly changing parameters.

The default value is 1 .
- Normalized Gradient - Normalized gradient adaptation algorithm

If you select this option, you must specify the Adaptation Gain, \(\gamma\), as a real, positive scalar. \(\gamma\) is directly proportional to the relative information content in the measurements. That is, when your measurements are trustworthy, specify a large value for \(\gamma\), and vice versa.

The default value is 1 .
- Gradient - Unnormalized gradient adaptation algorithm

If you select this option, you must specify the Adaptation Gain, \(\gamma\), as a real, positive scalar. \(\gamma\) is directly proportional to the relative information content in the measurements. That is, when your measurements are trustworthy, specify a large value for \(\gamma\), and vice versa.

The default value is 1 .
For more information about these algorithms, see "Recursive Algorithms for Online Estimation".

\section*{Block Options}

\section*{Output estimation error}

Add Error outport to the block. Use this signal to validate the estimation.
For a given time step, \(t\), the estimation error is calculated as:
\[
e(t)=y(t)-y e s t(t)
\]

On
Add Error outport.

\section*{\(\Gamma_{\text {off }}\)}
(Default) Do not add Error outport.

\section*{Output parameter covariance matrix}

Add Covariance outport to the block. Use this signal to examine parameter estimation uncertainty.

This option is not available when Estimation Method is either Normalized Gradient or Gradient.

Add Covariance outport.

(Default) Do not add Covariance outport.

\section*{Add enable port}

Add Enable inport to the block. Use this input signal to specify a control signal that enables or disables parameter estimation. The block estimates the parameter values for each time step that parameter estimation is enabled. If you disable parameter estimation at a given step, \(t\), then the software does not update the parameters for that time step. Instead, the block outputs the last estimated parameter values. Use this option, for example, to disable parameter estimation when the system enters a mode where the parameter values do not vary with time.

Add Enable inport.
\(\Gamma_{\text {off }}\)
(Default) Do not add Enable inport.

\section*{External reset}

Option to reset estimated parameters and parameter covariance matrix using specified initial values.

Suppose you reset the block at a time step, \(t\). If the block is enabled at \(t\), the software uses the initial parameter values specified in Initial Estimate to estimate the parameter values. In other words, at \(t\), the block performs a parameter update using
the initial estimate and the current values of the inports. The block outputs these updated parameter value estimates using the Parameters outport.

If the block is disabled at \(t\) and you reset the block, the block outputs the values specified in Initial Estimate.

Use this option, for example, when you reset the input because it did not excite the system as needed, resulting in poor estimation results.

Specify this option as one of the following:
- None - (Default) Estimated parameters and covariance matrix values are not reset.
- Rising - Triggers reset when the control signal rises from a negative or zero value to a positive value. If the initial value is negative, rising to zero triggers reset.
- Falling - Triggers reset when the control signal falls from a positive or a zero value to a negative value. If the initial value is positive, falling to zero triggers reset.
- Either - Triggers reset when the control signal is either rising or falling.
- Level - Triggers reset in either of these cases:
- Control signal is nonzero at the current time step
- Control signal changes from nonzero at the previous time step to zero at the current time step
- Level hold - Triggers reset when the control signal is nonzero at the current time step.

When you choose any option other than None, the software adds a Reset inport to the block. You provide the reset control input signal to this inport.

\section*{Ports}
\begin{tabular}{|l|ll|}
\hline Port Name & \begin{tabular}{l}
Port \\
Type \\
(In/ \\
Out)
\end{tabular} & \begin{tabular}{l}
Description \\
Inputs
\end{tabular} \\
\hline In & \begin{tabular}{l}
\(u(t)\), specified as a real scalar or vector. The port is available \\
when the Model Structure is ARX, ARMAX, BJ or OE.
\end{tabular} \\
\hline Output & In & \begin{tabular}{l}
\(y(t)\), specified as a real scalar signal.
\end{tabular} \\
\hline Parameters & Out & \begin{tabular}{l}
Estimated polynomial coefficients, returned as a bus. The bus \\
contains an element each for the \(A, B, C, D\) and \(F\) polynomials. \\
The following signals are available for the corresponding model: \\
- AR
\end{tabular} \\
\hline & & \begin{tabular}{l}
- ARX \\
- ARMA
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline Port Name & \begin{tabular}{l}
Port \\
Type \\
(In/
\end{tabular} & Description \\
Out)
\end{tabular}\(\quad\)\begin{tabular}{l}
Out
\end{tabular} \begin{tabular}{l}
Covariance of estimated parameters, returned as an \(N\)-by- \(N\) \\
matrix. \(N\) is the number of parameters.
\end{tabular}

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point

Note: The Inputs and Output inports must have matching data types.

\section*{References}
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999, pp. 363-369.

\section*{See Also}

Kalman Filter | Recursive Least Squares Estimator

\section*{Related Examples}
- "Online ARMAX Polynomial Model Estimation"
- "Preprocess Online Estimation Data"
- "Validate Online Estimation Results"
- "Generate Online Estimation Code"

\section*{More About}
- "What Are Polynomial Models?"
- "Algorithms for Recursive Estimation"```

[^0]: ' InputOffset ' - Remove offset from time-domain input data during estimation
 [] (default) | vector of positive integers

